#ifndef HGL_ALGORITHM_MATH_VECTOR_INCLUDE #define HGL_ALGORITHM_MATH_VECTOR_INCLUDE #ifdef _MSC_VER #pragma warning(disable:4244) // double -> int 精度丢失警告 #pragma warning(disable:4996) // sprintf may be unsafe, Consider using sprintf_s instead #endif//_MSC_VER #include #include /** * MathGeoLib * Game Math and Geometry Library * * My C++ library for 3D mathematics and geometry manipulation. * Jukka Jylänki * * offical web: http://clb.demon.fi/MathGeoLib/nightly/ * * License: * * This library is licensed under the Apache 2 license. I am not a lawyer, but to me that * license means that you can use this code for any purpose, both commercial and closed source. * You are however restricted from claiming you wrote it yourself, and cannot hold me liable * for anything over this code. * I acknowledge that most of the non-trivial math routines are taken off a book or a * research paper. In all places, I have tried to be diligent to properly attribute the original * source. Please contact me if you feel I have misattributed something. */ namespace hgl { using Vector2f=float2; using Vector3f=float3; using Vector4f=float4; inline bool operator == (const Vector2f &lhs,const Vector2f &rhs) { if(lhs.x!=rhs.x)return(false); if(lhs.y!=rhs.y)return(false); return(true); } inline bool operator != (const Vector2f &lhs,const Vector2f &rhs) { if(lhs.x!=rhs.x)return(true); if(lhs.y!=rhs.y)return(true); return(false); } inline bool operator == (const Vector3f &lhs,const Vector3f &rhs) { if(lhs.x!=rhs.x)return(false); if(lhs.y!=rhs.y)return(false); if(lhs.z!=rhs.z)return(false); return(true); } inline bool operator != (const Vector3f &lhs,const Vector3f &rhs) { if(lhs.x!=rhs.x)return(true); if(lhs.y!=rhs.y)return(true); if(lhs.z!=rhs.z)return(true); return(false); } inline bool operator == (const Vector4f &lhs,const Vector4f &rhs) { if(lhs.x!=rhs.x)return(false); if(lhs.y!=rhs.y)return(false); if(lhs.z!=rhs.z)return(false); if(lhs.w!=rhs.w)return(false); return(true); } inline bool operator != (const Vector4f &lhs,const Vector4f &rhs) { if(lhs.x!=rhs.x)return(true); if(lhs.y!=rhs.y)return(true); if(lhs.z!=rhs.z)return(true); if(lhs.w!=rhs.w)return(true); return(false); } inline void vec3to2(Vector2f &dst,const Vector3f &src) { dst.x=src.x; dst.y=src.y; } inline Vector2f vec3to2(const Vector3f &src) { return Vector2f(src.x,src.y); } inline void vec2to3(Vector3f &dst,const Vector2f &src,const float z) { dst.x=src.x; dst.y=src.y; dst.z=z; } inline Vector3f vec2to3(const Vector2f &src,const float z) { return Vector3f(src.x,src.y,z); } template inline T normalized(const T &v) { return v.Normalized(); } template inline void normalize(T &v) { v.Normalize(); } template inline T cross(const T &v1,const T &v2) { return v1.Cross(v2); } template inline float dot(const T &v1,const T &v2) { return v1.Dot(v2); } inline float ray_angle_cos(const Ray &ray,const vec &pos) { return ray.dir.Dot((pos-ray.pos).Normalized()); } inline float length_squared(const Vector2f &v) { return (v.x*v.x) + (v.y*v.y); } inline float length_squared_2d(const Vector3f &v) { return (v.x*v.x) + (v.y*v.y); } inline float length_squared(const Vector3f &v) { return (v.x*v.x) + (v.y*v.y) + (v.z*v.z); } inline float length_squared(const Vector4f &v) { return (v.x*v.x) + (v.y*v.y) + (v.z*v.z); } template inline float length(const T &v) { return sqrt(length_squared(v)); } inline float length_2d(const Vector3f &v) { return sqrt(length_squared_2d(v)); } template inline float length_squared(const T1 &v1, const T2 &v2) { const float x = (v1.x - v2.x); const float y = (v1.y - v2.y); return x*x + y*y; } template inline float length(const T1 &v1, const T2 &v2) { return sqrt(length_squared(v1, v2)); } inline float length_squared(const Vector3f &v1, const Vector3f &v2) { const float x = (v1.x - v2.x); const float y = (v1.y - v2.y); const float z = (v1.z - v2.z); return x*x + y*y + z*z; } template inline float length_squared_2d(const T1 &v1, const T2 &v2) { const float x = (v1.x - v2.x); const float y = (v1.y - v2.y); return x*x + y*y; } inline float length(const Vector3f &v1, const Vector3f &v2) { return sqrt(length_squared(v1, v2)); } template inline float length_2d(const T1 &v1, const T2 &v2) { return sqrt(length_squared_2d(v1, v2)); } inline Vector2f to(const Vector2f &start, const Vector2f &end, float pos) { return Vector2f(start.x + (end.x - start.x)*pos, start.y + (end.y - start.y)*pos); } inline Vector3f to(const Vector3f &start, const Vector3f &end, float pos) { return Vector3f(start.x + (end.x - start.x)*pos, start.y + (end.y - start.y)*pos, start.z + (end.z - start.z)*pos); } template inline void to_2d(T &result, const T &start, const T &end, float pos) { result.x = start.x + (end.x - start.x)*pos; result.y = start.y + (end.y - start.y)*pos; } inline float ray_angle_cos(const Vector3f &ray_dir, const Vector3f &ray_pos, const Vector3f &pos) { return dot(ray_dir, normalized(pos - ray_pos)); } /** * 做一个2D旋转计算 * @param result 结果 * @param source 原始点坐标 * @param center 圆心坐标 * @param ang 旋转角度 */ template inline void rotate2d(T1 &result, const T2 &source, const T3 ¢er, const double ang) { double as, ac; // double nx,ny; // as=sin(ang*(HGL_PI/180.0f)); // ac=cos(ang*(HGL_PI/180.0f)); //sincos(ang*(HGL_PI/180.0f),&as,&ac); //在80x87指令上,sin/cos是一个指令同时得出sin和cos,所以可以这样做 Lsincos(ang, as, ac); //低精度sin/cos计算 result.x = center.x + ((source.x - center.x)*ac - (source.y - center.y)*as); result.y = center.y + ((source.x - center.x)*as + (source.y - center.y)*ac); } template union vec2 { struct { T x,y; }; struct { T r,g; }; struct { T u,v; }; T data[2]; public: vec2(){x=y=0;} vec2(T v1,T v2):x(v1),y(v2){} vec2(const vec2 &v2) { x=v2.x; y=v2.y; } vec2(const Vector2f &v2f) { x=v2f.x; y=v2f.y; } operator const Vector2f()const{return Vector2f(x,y);} }; template union vec3 { struct { T x,y,z; }; struct { T r,g,b; }; struct { T u,v,w; }; T data[3]; public: vec3(){x=y=z=0;} vec3(T v1,T v2,T v3):x(v1),y(v2),z(v3){} vec3(const vec3 &v3) { x=v3.x; y=v3.y; z=v3.z; } vec3(const Vector3f &v3f) { x=v3f.x; y=v3f.y; z=v3f.z; return *this; } operator const Vector3f()const{return Vector3f(x,y,z);} }; template union vec4 { struct { T x,y,z,w; }; struct { T r,g,b,a; }; T data[4]; public: vec4(){x=y=z=w=0;} vec4(T v1,T v2,T v3,T v4):x(v1),y(v2),z(v3),w(v4){} vec4(const vec4 &v4) { x=v4.x; y=v4.y; z=v4.z; w=v4.w; } vec4(const Vector4f &v4f) { x=v4f.x; y=v4f.y; z=v4f.z; w=v4f.w; return *this; } operator const Vector4f()const{return Vector4f(x,y,z,w);} }; }//namespace hgl #endif//HGL_ALGORITHM_MATH_VECTOR_INCLUDE