CMCore/inc/hgl/math/Vector.h

351 lines
8.7 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef HGL_ALGORITHM_MATH_VECTOR_INCLUDE
#define HGL_ALGORITHM_MATH_VECTOR_INCLUDE
#ifdef _MSC_VER
#pragma warning(disable:4244) // double -> int 精度丢失警告
#pragma warning(disable:4996) // sprintf may be unsafe, Consider using sprintf_s instead
#endif//_MSC_VER
#include<hgl/math/FastTriangle.h>
#include<MathGeoLib.h>
/**
* MathGeoLib
* Game Math and Geometry Library
*
* My C++ library for 3D mathematics and geometry manipulation.
* Jukka Jylänki
*
* offical web: http://clb.demon.fi/MathGeoLib/nightly/
*
* License:
*
* This library is licensed under the Apache 2 license. I am not a lawyer, but to me that
* license means that you can use this code for any purpose, both commercial and closed source.
* You are however restricted from claiming you wrote it yourself, and cannot hold me liable
* for anything over this code.
* I acknowledge that most of the non-trivial math routines are taken off a book or a
* research paper. In all places, I have tried to be diligent to properly attribute the original
* source. Please contact me if you feel I have misattributed something.
*/
namespace hgl
{
using Vector2f=float2;
using Vector3f=float3;
using Vector4f=float4;
inline bool operator == (const Vector2f &lhs,const Vector2f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
return(true);
}
inline bool operator != (const Vector2f &lhs,const Vector2f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
return(false);
}
inline bool operator == (const Vector3f &lhs,const Vector3f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
if(lhs.z!=rhs.z)return(false);
return(true);
}
inline bool operator != (const Vector3f &lhs,const Vector3f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
if(lhs.z!=rhs.z)return(true);
return(false);
}
inline bool operator == (const Vector4f &lhs,const Vector4f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
if(lhs.z!=rhs.z)return(false);
if(lhs.w!=rhs.w)return(false);
return(true);
}
inline bool operator != (const Vector4f &lhs,const Vector4f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
if(lhs.z!=rhs.z)return(true);
if(lhs.w!=rhs.w)return(true);
return(false);
}
inline void vec3to2(Vector2f &dst,const Vector3f &src)
{
dst.x=src.x;
dst.y=src.y;
}
inline Vector2f vec3to2(const Vector3f &src)
{
return Vector2f(src.x,src.y);
}
inline void vec2to3(Vector3f &dst,const Vector2f &src,const float z)
{
dst.x=src.x;
dst.y=src.y;
dst.z=z;
}
inline Vector3f vec2to3(const Vector2f &src,const float z)
{
return Vector3f(src.x,src.y,z);
}
template<typename T>
inline T clamp(const T &v,const T &min_v,const T &max_v)
{
if(v<min_v)return min_v;
if(v>max_v)return max_v;
return v;
}
template<typename T>
inline T normalized(const T &v)
{
return v.Normalized();
}
template<typename T>
inline void normalize(T &v)
{
v.Normalize();
}
template<typename T>
inline T cross(const T &v1,const T &v2)
{
return v1.Cross(v2);
}
template<typename T>
inline float dot(const T &v1,const T &v2)
{
return v1.Dot(v2);
}
template<typename T>
inline float dot2(const T &v)
{
return v.Dot(v);
}
inline float ray_angle_cos(const Ray &ray,const vec &pos)
{
return ray.dir.Dot((pos-ray.pos).Normalized());
}
inline float length_squared(const Vector2f &v)
{
return (v.x*v.x) + (v.y*v.y);
}
inline float length_squared_2d(const Vector3f &v)
{
return (v.x*v.x) + (v.y*v.y);
}
inline float length_squared(const Vector3f &v)
{
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
}
inline float length_squared(const Vector4f &v)
{
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
}
template<typename T>
inline float length(const T &v)
{
return sqrt(length_squared(v));
}
inline float length_2d(const Vector3f &v)
{
return sqrt(length_squared_2d(v));
}
template<typename T1, typename T2>
inline float length(const T1 &v1, const T2 &v2)
{
return sqrt(length_squared(v1-v2));
}
template<typename T1, typename T2>
inline float length_squared(const T1 &v1, const T2 &v2)
{
return length_squared(v1-v2);
}
template<typename T1, typename T2>
inline float length_squared_2d(const T1 &v1, const T2 &v2)
{
const double x = double(v1.x) - double(v2.x);
const double y = double(v1.y) - double(v2.y);
return x*x + y*y;
}
template<typename T1, typename T2>
inline float length_2d(const T1 &v1, const T2 &v2)
{
return sqrt(length_squared_2d(v1, v2));
}
inline Vector2f to(const Vector2f &start, const Vector2f &end, float pos)
{
return Vector2f(start.x + (end.x - start.x)*pos,
start.y + (end.y - start.y)*pos);
}
inline Vector3f to(const Vector3f &start, const Vector3f &end, float pos)
{
return Vector3f(start.x + (end.x - start.x)*pos,
start.y + (end.y - start.y)*pos,
start.z + (end.z - start.z)*pos);
}
template<typename T>
inline void to_2d(T &result, const T &start, const T &end, float pos)
{
result.x = start.x + (end.x - start.x)*pos;
result.y = start.y + (end.y - start.y)*pos;
}
inline float ray_angle_cos(const Vector3f &ray_dir, const Vector3f &ray_pos, const Vector3f &pos)
{
return dot(ray_dir, normalized(pos - ray_pos));
}
/**
* 做一个2D旋转计算
* @param result 结果
* @param source 原始点坐标
* @param center 圆心坐标
* @param ang 旋转角度
*/
template<typename T1, typename T2, typename T3>
inline void rotate2d(T1 &result, const T2 &source, const T3 &center, const double ang)
{
double as, ac;
// double nx,ny;
// as=sin(ang*(HGL_PI/180.0f));
// ac=cos(ang*(HGL_PI/180.0f));
//sincos(ang*(HGL_PI/180.0f),&as,&ac); //在80x87指令上sin/cos是一个指令同时得出sin和cos所以可以这样做
Lsincos(ang, as, ac); //低精度sin/cos计算
result.x = center.x + ((source.x - center.x)*ac - (source.y - center.y)*as);
result.y = center.y + ((source.x - center.x)*as + (source.y - center.y)*ac);
}
template<typename T> union vec2
{
struct { T x,y; };
struct { T r,g; };
struct { T u,v; };
T data[2];
public:
vec2(){x=y=0;}
vec2(T v1,T v2):x(v1),y(v2){}
vec2(const vec2 &v2)
{
x=v2.x;
y=v2.y;
}
vec2(const Vector2f &v2f)
{
x=v2f.x;
y=v2f.y;
}
operator const Vector2f()const{return Vector2f(x,y);}
};
template<typename T> union vec3
{
struct { T x,y,z; };
struct { T r,g,b; };
struct { T u,v,w; };
T data[3];
public:
vec3(){x=y=z=0;}
vec3(T v1,T v2,T v3):x(v1),y(v2),z(v3){}
vec3(const vec3 &v3)
{
x=v3.x;
y=v3.y;
z=v3.z;
}
vec3(const Vector3f &v3f)
{
x=v3f.x;
y=v3f.y;
z=v3f.z;
}
operator const Vector3f()const{return Vector3f(x,y,z);}
};
template<typename T> union vec4
{
struct { T x,y,z,w; };
struct { T r,g,b,a; };
T data[4];
public:
vec4(){x=y=z=w=0;}
vec4(T v1,T v2,T v3,T v4):x(v1),y(v2),z(v3),w(v4){}
vec4(const vec4 &v4)
{
x=v4.x;
y=v4.y;
z=v4.z;
w=v4.w;
}
vec4(const Vector4f &v4f)
{
x=v4f.x;
y=v4f.y;
z=v4f.z;
w=v4f.w;
}
operator const Vector4f()const{return Vector4f(x,y,z,w);}
};
inline const Vector3f PolarToVector3f(float yaw,float pitch)
{
return Vector3f(sinf(yaw) * cosf(pitch), sinf(pitch), cosf(yaw) * cosf(pitch));
}
inline const Vector4f PolarToVector4f(float yaw,float pitch)
{
return Vector4f(sinf(yaw) * cosf(pitch), sinf(pitch), cosf(yaw) * cosf(pitch), 0);
}
}//namespace hgl
#endif//HGL_ALGORITHM_MATH_VECTOR_INCLUDE