added codes of Crypt in CMUtil

This commit is contained in:
HuYingzhuo(hugo/hyzboy) 2023-07-21 19:33:38 +08:00
parent 626cb2806e
commit 3103321585
11 changed files with 20231 additions and 1 deletions

26
inc/hgl/util/Crypt.h Normal file
View File

@ -0,0 +1,26 @@
#ifndef HGL_ALGORITHM_CRYPT_INCLUDE
#define HGL_ALGORITHM_CRYPT_INCLUDE
#include<hgl/type/DataType.h>
namespace hgl //校验/加密算法
{
namespace io
{
class OutputStream;
}//namespace io
namespace crypt
{
void OverflowEncrypt(void *, void *, int, void *, int); ///<溢出加密(轻度加密)
void OverflowDecrypt(void *, void *, int, void *, int); ///<溢出解密
void AesEncrypt(uint8 data[16], uint8 *key, int keysize); ///<AES加密
void AesDecrypt(uint8 data[16], uint8 *key, int keysize); ///<AES解密
void RC4Encrypt(uint8 *data, int datasize, uint8 *key, int keysize); ///<RC4加密
bool base64_encode(io::OutputStream *os,const uchar *input,size_t len);
bool base64_decode(io::OutputStream *os,const uchar *input,size_t len);
}//namespace crypt
}//namespace hgl
#endif//HGL_ALGORITHM_CRYPT_INCLUDE

View File

@ -7,7 +7,6 @@ namespace hgl
{ {
using namespace io; using namespace io;
/** /**
* PList * PList
* @param filename * @param filename

View File

@ -1,3 +1,4 @@
#################################################################################################### XML
option(CM_UTIL_SUPPORT_XML "Build XML Parse module." ON) option(CM_UTIL_SUPPORT_XML "Build XML Parse module." ON)
if(CM_UTIL_SUPPORT_XML) if(CM_UTIL_SUPPORT_XML)
@ -31,6 +32,8 @@ if(CM_UTIL_SUPPORT_XML)
endif(CM_UTIL_SUPPORT_XML) endif(CM_UTIL_SUPPORT_XML)
#################################################################################################### JSON
option(CM_UTIL_SUPPORT_JSON "Build JSON Parse/make module." ON) option(CM_UTIL_SUPPORT_JSON "Build JSON Parse/make module." ON)
IF(CM_UTIL_SUPPORT_JSON) IF(CM_UTIL_SUPPORT_JSON)
@ -42,6 +45,8 @@ IF(CM_UTIL_SUPPORT_JSON)
SOURCE_GROUP("JSON" FILES ${JSON_TOOL_SOURCE}) SOURCE_GROUP("JSON" FILES ${JSON_TOOL_SOURCE})
ENDIF(CM_UTIL_SUPPORT_JSON) ENDIF(CM_UTIL_SUPPORT_JSON)
#################################################################################################### HASH
option(CM_UTIL_SUPPORT_HASH "Build HASH module" ON) option(CM_UTIL_SUPPORT_HASH "Build HASH module" ON)
IF(CM_UTIL_SUPPORT_HASH) IF(CM_UTIL_SUPPORT_HASH)
@ -61,6 +66,18 @@ IF(CM_UTIL_SUPPORT_HASH)
SOURCE_GROUP("HASH" FILES ${HASH_HEADER_FILES} ${HASH_SOURCE_FILES}) SOURCE_GROUP("HASH" FILES ${HASH_HEADER_FILES} ${HASH_SOURCE_FILES})
ENDIF(CM_UTIL_SUPPORT_HASH) ENDIF(CM_UTIL_SUPPORT_HASH)
#################################################################################################### CRYPT
SET(CRYPT_HEADER_FILES ${CMUTIL_ROOT_INCLUDE_PATH}/hgl/util/Crypt.h)
SET(CRYPT_SOURCE_FILES crypt/aes.cpp
crypt/base64.cpp
crypt/Overflow.cpp
crypt/rc4.cpp
)
SOURCE_GROUP("Crypt" FILES ${CRYPT_HEADER_FILES} ${CRYPT_SOURCE_FILES})
#################################################################################################### ####################################################################################################
SET(CSV_SOURCE ${CMUTIL_ROOT_INCLUDE_PATH}/hgl/util/csv/CSVFieldSplite.h SET(CSV_SOURCE ${CMUTIL_ROOT_INCLUDE_PATH}/hgl/util/csv/CSVFieldSplite.h
@ -99,6 +116,9 @@ add_cm_library(CMUtil "CM" ${CMD_SOURCE}
${HASH_HEADER_FILES} ${HASH_HEADER_FILES}
${HASH_SOURCE_FILES} ${HASH_SOURCE_FILES}
${CRYPT_HEADER_FILES}
${CRYPT_SOURCE_FILES}
) )
if(CM_UTIL_SUPPORT_XML) if(CM_UTIL_SUPPORT_XML)

93
src/crypt/Overflow.cpp Normal file
View File

@ -0,0 +1,93 @@
#include<hgl/type/DataType.h>
namespace hgl
{
namespace crypt
{
/**
*
* @param target
* @param source
* @param size
* @param key
* @param key_size
*/
void OverflowEncrypt(void *target, void *source, int size, void *key, int key_size)
{
int n;
uint8 *key_p;
uint8 *tp, *sp;
n = key_size;
key_p = (uint8 *)key;
tp = (uint8 *)target;
sp = (uint8 *)source;
while (size--)
{
uint tmp = (*sp) + (*key_p);
if (tmp > 0xFF)
*tp = tmp - 0x100;
else
*tp = tmp;
*key_p ^= *tp;
tp++;
sp++;
if (--n == 0)
{
n = key_size;
key_p = (uint8 *)key;
}
else
key_p++;
}
}
/**
*
* @param target
* @param source
* @param size
* @param key
* @param keysize
*/
void OverflowDecrypt(void *target, void *source, int size, void *key, int key_size)
{
int n;
uint8 *key_p;
uint8 *tp, *sp;
n = key_size;
key_p = (uint8 *)key;
tp = (uint8 *)target;
sp = (uint8 *)source;
while (size--)
{
if (*key_p > *sp)
*tp = *sp + 0x100 - (*key_p);
else
*tp = *sp - (*key_p);
*key_p ^= *sp;
tp++;
sp++;
if (--n == 0)
{
n = key_size;
key_p = (uint8 *)key;
}
else
key_p++;
}
}
}//namespace crypt
}//namespace hgl

613
src/crypt/aes.cpp Normal file
View File

@ -0,0 +1,613 @@
#include<hgl/type/DataType.h>
using namespace hgl;
namespace
{
struct aes_context
{
int nr; /* number of rounds */
uint32 erk[64]; /* encryption round keys */
uint32 drk[64]; /* decryption round keys */
};
/* forward S-box */
const uint32 FSb[256] =
{
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
/* forward table */
#define FT \
\
V(C6,63,63,A5), V(F8,7C,7C,84), V(EE,77,77,99), V(F6,7B,7B,8D), \
V(FF,F2,F2,0D), V(D6,6B,6B,BD), V(DE,6F,6F,B1), V(91,C5,C5,54), \
V(60,30,30,50), V(02,01,01,03), V(CE,67,67,A9), V(56,2B,2B,7D), \
V(E7,FE,FE,19), V(B5,D7,D7,62), V(4D,AB,AB,E6), V(EC,76,76,9A), \
V(8F,CA,CA,45), V(1F,82,82,9D), V(89,C9,C9,40), V(FA,7D,7D,87), \
V(EF,FA,FA,15), V(B2,59,59,EB), V(8E,47,47,C9), V(FB,F0,F0,0B), \
V(41,AD,AD,EC), V(B3,D4,D4,67), V(5F,A2,A2,FD), V(45,AF,AF,EA), \
V(23,9C,9C,BF), V(53,A4,A4,F7), V(E4,72,72,96), V(9B,C0,C0,5B), \
V(75,B7,B7,C2), V(E1,FD,FD,1C), V(3D,93,93,AE), V(4C,26,26,6A), \
V(6C,36,36,5A), V(7E,3F,3F,41), V(F5,F7,F7,02), V(83,CC,CC,4F), \
V(68,34,34,5C), V(51,A5,A5,F4), V(D1,E5,E5,34), V(F9,F1,F1,08), \
V(E2,71,71,93), V(AB,D8,D8,73), V(62,31,31,53), V(2A,15,15,3F), \
V(08,04,04,0C), V(95,C7,C7,52), V(46,23,23,65), V(9D,C3,C3,5E), \
V(30,18,18,28), V(37,96,96,A1), V(0A,05,05,0F), V(2F,9A,9A,B5), \
V(0E,07,07,09), V(24,12,12,36), V(1B,80,80,9B), V(DF,E2,E2,3D), \
V(CD,EB,EB,26), V(4E,27,27,69), V(7F,B2,B2,CD), V(EA,75,75,9F), \
V(12,09,09,1B), V(1D,83,83,9E), V(58,2C,2C,74), V(34,1A,1A,2E), \
V(36,1B,1B,2D), V(DC,6E,6E,B2), V(B4,5A,5A,EE), V(5B,A0,A0,FB), \
V(A4,52,52,F6), V(76,3B,3B,4D), V(B7,D6,D6,61), V(7D,B3,B3,CE), \
V(52,29,29,7B), V(DD,E3,E3,3E), V(5E,2F,2F,71), V(13,84,84,97), \
V(A6,53,53,F5), V(B9,D1,D1,68), V(00,00,00,00), V(C1,ED,ED,2C), \
V(40,20,20,60), V(E3,FC,FC,1F), V(79,B1,B1,C8), V(B6,5B,5B,ED), \
V(D4,6A,6A,BE), V(8D,CB,CB,46), V(67,BE,BE,D9), V(72,39,39,4B), \
V(94,4A,4A,DE), V(98,4C,4C,D4), V(B0,58,58,E8), V(85,CF,CF,4A), \
V(BB,D0,D0,6B), V(C5,EF,EF,2A), V(4F,AA,AA,E5), V(ED,FB,FB,16), \
V(86,43,43,C5), V(9A,4D,4D,D7), V(66,33,33,55), V(11,85,85,94), \
V(8A,45,45,CF), V(E9,F9,F9,10), V(04,02,02,06), V(FE,7F,7F,81), \
V(A0,50,50,F0), V(78,3C,3C,44), V(25,9F,9F,BA), V(4B,A8,A8,E3), \
V(A2,51,51,F3), V(5D,A3,A3,FE), V(80,40,40,C0), V(05,8F,8F,8A), \
V(3F,92,92,AD), V(21,9D,9D,BC), V(70,38,38,48), V(F1,F5,F5,04), \
V(63,BC,BC,DF), V(77,B6,B6,C1), V(AF,DA,DA,75), V(42,21,21,63), \
V(20,10,10,30), V(E5,FF,FF,1A), V(FD,F3,F3,0E), V(BF,D2,D2,6D), \
V(81,CD,CD,4C), V(18,0C,0C,14), V(26,13,13,35), V(C3,EC,EC,2F), \
V(BE,5F,5F,E1), V(35,97,97,A2), V(88,44,44,CC), V(2E,17,17,39), \
V(93,C4,C4,57), V(55,A7,A7,F2), V(FC,7E,7E,82), V(7A,3D,3D,47), \
V(C8,64,64,AC), V(BA,5D,5D,E7), V(32,19,19,2B), V(E6,73,73,95), \
V(C0,60,60,A0), V(19,81,81,98), V(9E,4F,4F,D1), V(A3,DC,DC,7F), \
V(44,22,22,66), V(54,2A,2A,7E), V(3B,90,90,AB), V(0B,88,88,83), \
V(8C,46,46,CA), V(C7,EE,EE,29), V(6B,B8,B8,D3), V(28,14,14,3C), \
V(A7,DE,DE,79), V(BC,5E,5E,E2), V(16,0B,0B,1D), V(AD,DB,DB,76), \
V(DB,E0,E0,3B), V(64,32,32,56), V(74,3A,3A,4E), V(14,0A,0A,1E), \
V(92,49,49,DB), V(0C,06,06,0A), V(48,24,24,6C), V(B8,5C,5C,E4), \
V(9F,C2,C2,5D), V(BD,D3,D3,6E), V(43,AC,AC,EF), V(C4,62,62,A6), \
V(39,91,91,A8), V(31,95,95,A4), V(D3,E4,E4,37), V(F2,79,79,8B), \
V(D5,E7,E7,32), V(8B,C8,C8,43), V(6E,37,37,59), V(DA,6D,6D,B7), \
V(01,8D,8D,8C), V(B1,D5,D5,64), V(9C,4E,4E,D2), V(49,A9,A9,E0), \
V(D8,6C,6C,B4), V(AC,56,56,FA), V(F3,F4,F4,07), V(CF,EA,EA,25), \
V(CA,65,65,AF), V(F4,7A,7A,8E), V(47,AE,AE,E9), V(10,08,08,18), \
V(6F,BA,BA,D5), V(F0,78,78,88), V(4A,25,25,6F), V(5C,2E,2E,72), \
V(38,1C,1C,24), V(57,A6,A6,F1), V(73,B4,B4,C7), V(97,C6,C6,51), \
V(CB,E8,E8,23), V(A1,DD,DD,7C), V(E8,74,74,9C), V(3E,1F,1F,21), \
V(96,4B,4B,DD), V(61,BD,BD,DC), V(0D,8B,8B,86), V(0F,8A,8A,85), \
V(E0,70,70,90), V(7C,3E,3E,42), V(71,B5,B5,C4), V(CC,66,66,AA), \
V(90,48,48,D8), V(06,03,03,05), V(F7,F6,F6,01), V(1C,0E,0E,12), \
V(C2,61,61,A3), V(6A,35,35,5F), V(AE,57,57,F9), V(69,B9,B9,D0), \
V(17,86,86,91), V(99,C1,C1,58), V(3A,1D,1D,27), V(27,9E,9E,B9), \
V(D9,E1,E1,38), V(EB,F8,F8,13), V(2B,98,98,B3), V(22,11,11,33), \
V(D2,69,69,BB), V(A9,D9,D9,70), V(07,8E,8E,89), V(33,94,94,A7), \
V(2D,9B,9B,B6), V(3C,1E,1E,22), V(15,87,87,92), V(C9,E9,E9,20), \
V(87,CE,CE,49), V(AA,55,55,FF), V(50,28,28,78), V(A5,DF,DF,7A), \
V(03,8C,8C,8F), V(59,A1,A1,F8), V(09,89,89,80), V(1A,0D,0D,17), \
V(65,BF,BF,DA), V(D7,E6,E6,31), V(84,42,42,C6), V(D0,68,68,B8), \
V(82,41,41,C3), V(29,99,99,B0), V(5A,2D,2D,77), V(1E,0F,0F,11), \
V(7B,B0,B0,CB), V(A8,54,54,FC), V(6D,BB,BB,D6), V(2C,16,16,3A)
#define V(a,b,c,d) 0x##a##b##c##d
const uint32 FT0[256] = { FT };
#undef V
#define V(a,b,c,d) 0x##d##a##b##c
const uint32 FT1[256] = { FT };
#undef V
#define V(a,b,c,d) 0x##c##d##a##b
const uint32 FT2[256] = { FT };
#undef V
#define V(a,b,c,d) 0x##b##c##d##a
const uint32 FT3[256] = { FT };
#undef V
/* reverse S-box */
const uint32 RSb[256] =
{
0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};
/* reverse table */
#define RT \
\
V(51,F4,A7,50), V(7E,41,65,53), V(1A,17,A4,C3), V(3A,27,5E,96), \
V(3B,AB,6B,CB), V(1F,9D,45,F1), V(AC,FA,58,AB), V(4B,E3,03,93), \
V(20,30,FA,55), V(AD,76,6D,F6), V(88,CC,76,91), V(F5,02,4C,25), \
V(4F,E5,D7,FC), V(C5,2A,CB,D7), V(26,35,44,80), V(B5,62,A3,8F), \
V(DE,B1,5A,49), V(25,BA,1B,67), V(45,EA,0E,98), V(5D,FE,C0,E1), \
V(C3,2F,75,02), V(81,4C,F0,12), V(8D,46,97,A3), V(6B,D3,F9,C6), \
V(03,8F,5F,E7), V(15,92,9C,95), V(BF,6D,7A,EB), V(95,52,59,DA), \
V(D4,BE,83,2D), V(58,74,21,D3), V(49,E0,69,29), V(8E,C9,C8,44), \
V(75,C2,89,6A), V(F4,8E,79,78), V(99,58,3E,6B), V(27,B9,71,DD), \
V(BE,E1,4F,B6), V(F0,88,AD,17), V(C9,20,AC,66), V(7D,CE,3A,B4), \
V(63,DF,4A,18), V(E5,1A,31,82), V(97,51,33,60), V(62,53,7F,45), \
V(B1,64,77,E0), V(BB,6B,AE,84), V(FE,81,A0,1C), V(F9,08,2B,94), \
V(70,48,68,58), V(8F,45,FD,19), V(94,DE,6C,87), V(52,7B,F8,B7), \
V(AB,73,D3,23), V(72,4B,02,E2), V(E3,1F,8F,57), V(66,55,AB,2A), \
V(B2,EB,28,07), V(2F,B5,C2,03), V(86,C5,7B,9A), V(D3,37,08,A5), \
V(30,28,87,F2), V(23,BF,A5,B2), V(02,03,6A,BA), V(ED,16,82,5C), \
V(8A,CF,1C,2B), V(A7,79,B4,92), V(F3,07,F2,F0), V(4E,69,E2,A1), \
V(65,DA,F4,CD), V(06,05,BE,D5), V(D1,34,62,1F), V(C4,A6,FE,8A), \
V(34,2E,53,9D), V(A2,F3,55,A0), V(05,8A,E1,32), V(A4,F6,EB,75), \
V(0B,83,EC,39), V(40,60,EF,AA), V(5E,71,9F,06), V(BD,6E,10,51), \
V(3E,21,8A,F9), V(96,DD,06,3D), V(DD,3E,05,AE), V(4D,E6,BD,46), \
V(91,54,8D,B5), V(71,C4,5D,05), V(04,06,D4,6F), V(60,50,15,FF), \
V(19,98,FB,24), V(D6,BD,E9,97), V(89,40,43,CC), V(67,D9,9E,77), \
V(B0,E8,42,BD), V(07,89,8B,88), V(E7,19,5B,38), V(79,C8,EE,DB), \
V(A1,7C,0A,47), V(7C,42,0F,E9), V(F8,84,1E,C9), V(00,00,00,00), \
V(09,80,86,83), V(32,2B,ED,48), V(1E,11,70,AC), V(6C,5A,72,4E), \
V(FD,0E,FF,FB), V(0F,85,38,56), V(3D,AE,D5,1E), V(36,2D,39,27), \
V(0A,0F,D9,64), V(68,5C,A6,21), V(9B,5B,54,D1), V(24,36,2E,3A), \
V(0C,0A,67,B1), V(93,57,E7,0F), V(B4,EE,96,D2), V(1B,9B,91,9E), \
V(80,C0,C5,4F), V(61,DC,20,A2), V(5A,77,4B,69), V(1C,12,1A,16), \
V(E2,93,BA,0A), V(C0,A0,2A,E5), V(3C,22,E0,43), V(12,1B,17,1D), \
V(0E,09,0D,0B), V(F2,8B,C7,AD), V(2D,B6,A8,B9), V(14,1E,A9,C8), \
V(57,F1,19,85), V(AF,75,07,4C), V(EE,99,DD,BB), V(A3,7F,60,FD), \
V(F7,01,26,9F), V(5C,72,F5,BC), V(44,66,3B,C5), V(5B,FB,7E,34), \
V(8B,43,29,76), V(CB,23,C6,DC), V(B6,ED,FC,68), V(B8,E4,F1,63), \
V(D7,31,DC,CA), V(42,63,85,10), V(13,97,22,40), V(84,C6,11,20), \
V(85,4A,24,7D), V(D2,BB,3D,F8), V(AE,F9,32,11), V(C7,29,A1,6D), \
V(1D,9E,2F,4B), V(DC,B2,30,F3), V(0D,86,52,EC), V(77,C1,E3,D0), \
V(2B,B3,16,6C), V(A9,70,B9,99), V(11,94,48,FA), V(47,E9,64,22), \
V(A8,FC,8C,C4), V(A0,F0,3F,1A), V(56,7D,2C,D8), V(22,33,90,EF), \
V(87,49,4E,C7), V(D9,38,D1,C1), V(8C,CA,A2,FE), V(98,D4,0B,36), \
V(A6,F5,81,CF), V(A5,7A,DE,28), V(DA,B7,8E,26), V(3F,AD,BF,A4), \
V(2C,3A,9D,E4), V(50,78,92,0D), V(6A,5F,CC,9B), V(54,7E,46,62), \
V(F6,8D,13,C2), V(90,D8,B8,E8), V(2E,39,F7,5E), V(82,C3,AF,F5), \
V(9F,5D,80,BE), V(69,D0,93,7C), V(6F,D5,2D,A9), V(CF,25,12,B3), \
V(C8,AC,99,3B), V(10,18,7D,A7), V(E8,9C,63,6E), V(DB,3B,BB,7B), \
V(CD,26,78,09), V(6E,59,18,F4), V(EC,9A,B7,01), V(83,4F,9A,A8), \
V(E6,95,6E,65), V(AA,FF,E6,7E), V(21,BC,CF,08), V(EF,15,E8,E6), \
V(BA,E7,9B,D9), V(4A,6F,36,CE), V(EA,9F,09,D4), V(29,B0,7C,D6), \
V(31,A4,B2,AF), V(2A,3F,23,31), V(C6,A5,94,30), V(35,A2,66,C0), \
V(74,4E,BC,37), V(FC,82,CA,A6), V(E0,90,D0,B0), V(33,A7,D8,15), \
V(F1,04,98,4A), V(41,EC,DA,F7), V(7F,CD,50,0E), V(17,91,F6,2F), \
V(76,4D,D6,8D), V(43,EF,B0,4D), V(CC,AA,4D,54), V(E4,96,04,DF), \
V(9E,D1,B5,E3), V(4C,6A,88,1B), V(C1,2C,1F,B8), V(46,65,51,7F), \
V(9D,5E,EA,04), V(01,8C,35,5D), V(FA,87,74,73), V(FB,0B,41,2E), \
V(B3,67,1D,5A), V(92,DB,D2,52), V(E9,10,56,33), V(6D,D6,47,13), \
V(9A,D7,61,8C), V(37,A1,0C,7A), V(59,F8,14,8E), V(EB,13,3C,89), \
V(CE,A9,27,EE), V(B7,61,C9,35), V(E1,1C,E5,ED), V(7A,47,B1,3C), \
V(9C,D2,DF,59), V(55,F2,73,3F), V(18,14,CE,79), V(73,C7,37,BF), \
V(53,F7,CD,EA), V(5F,FD,AA,5B), V(DF,3D,6F,14), V(78,44,DB,86), \
V(CA,AF,F3,81), V(B9,68,C4,3E), V(38,24,34,2C), V(C2,A3,40,5F), \
V(16,1D,C3,72), V(BC,E2,25,0C), V(28,3C,49,8B), V(FF,0D,95,41), \
V(39,A8,01,71), V(08,0C,B3,DE), V(D8,B4,E4,9C), V(64,56,C1,90), \
V(7B,CB,84,61), V(D5,32,B6,70), V(48,6C,5C,74), V(D0,B8,57,42)
#define V(a,b,c,d) 0x##a##b##c##d
const uint32 RT0[256] = { RT };
#undef V
#define V(a,b,c,d) 0x##d##a##b##c
const uint32 RT1[256] = { RT };
#undef V
#define V(a,b,c,d) 0x##c##d##a##b
const uint32 RT2[256] = { RT };
#undef V
#define V(a,b,c,d) 0x##b##c##d##a
const uint32 RT3[256] = { RT };
#undef V
/* round constants */
const uint32 RCON[10] =
{
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1B000000, 0x36000000
};
/* platform-independant 32-bit integer manipulation macros */
#define GET_UINT32(n,b,i) \
{ \
(n) = ( (uint32) (b)[(i) ] << 24 ) \
| ( (uint32) (b)[(i) + 1] << 16 ) \
| ( (uint32) (b)[(i) + 2] << 8 ) \
| ( (uint32) (b)[(i) + 3] ); \
}
#define PUT_UINT32(n,b,i) \
{ \
(b)[(i) ] = (uint8) ( (n) >> 24 ); \
(b)[(i) + 1] = (uint8) ( (n) >> 16 ); \
(b)[(i) + 2] = (uint8) ( (n) >> 8 ); \
(b)[(i) + 3] = (uint8) ( (n) ); \
}
//--------------------------------------------------------------------------------------------------
// key scheduling routine
int aes_set_key( struct aes_context *ctx, unsigned char *key, int nbits )
{
int i;
uint32 *RK;
switch( nbits )
{
case 128: ctx->nr = 10; break;
case 192: ctx->nr = 12; break;
case 256: ctx->nr = 14; break;
default : return( 1 );
}
RK = ctx->erk;
for( i = 0; i < (nbits >> 5); i++ )
{
GET_UINT32( RK[i], key, i * 4 );
}
/* setup encryption round keys */
switch( nbits )
{
case 128:
for( i = 0; i < 10; i++, RK += 4 )
{
RK[4] = RK[0] ^ RCON[i] ^
( FSb[ (unsigned char) ( RK[3] >> 16 ) ] << 24 ) ^
( FSb[ (unsigned char) ( RK[3] >> 8 ) ] << 16 ) ^
( FSb[ (unsigned char) ( RK[3] ) ] << 8 ) ^
( FSb[ (unsigned char) ( RK[3] >> 24 ) ] );
RK[5] = RK[1] ^ RK[4];
RK[6] = RK[2] ^ RK[5];
RK[7] = RK[3] ^ RK[6];
}
break;
case 192:
for( i = 0; i < 8; i++, RK += 6 )
{
RK[6] = RK[0] ^ RCON[i] ^
( FSb[ (unsigned char) ( RK[5] >> 16 ) ] << 24 ) ^
( FSb[ (unsigned char) ( RK[5] >> 8 ) ] << 16 ) ^
( FSb[ (unsigned char) ( RK[5] ) ] << 8 ) ^
( FSb[ (unsigned char) ( RK[5] >> 24 ) ] );
RK[7] = RK[1] ^ RK[6];
RK[8] = RK[2] ^ RK[7];
RK[9] = RK[3] ^ RK[8];
RK[10] = RK[4] ^ RK[9];
RK[11] = RK[5] ^ RK[10];
}
break;
case 256:
for( i = 0; i < 7; i++, RK += 8 )
{
RK[8] = RK[0] ^ RCON[i] ^
( FSb[ (unsigned char) ( RK[7] >> 16 ) ] << 24 ) ^
( FSb[ (unsigned char) ( RK[7] >> 8 ) ] << 16 ) ^
( FSb[ (unsigned char) ( RK[7] ) ] << 8 ) ^
( FSb[ (unsigned char) ( RK[7] >> 24 ) ] );
RK[9] = RK[1] ^ RK[8];
RK[10] = RK[2] ^ RK[9];
RK[11] = RK[3] ^ RK[10];
RK[12] = RK[4] ^
( FSb[ (unsigned char) ( RK[11] >> 24 ) ] << 24 ) ^
( FSb[ (unsigned char) ( RK[11] >> 16 ) ] << 16 ) ^
( FSb[ (unsigned char) ( RK[11] >> 8 ) ] << 8 ) ^
( FSb[ (unsigned char) ( RK[11] ) ] );
RK[13] = RK[5] ^ RK[12];
RK[14] = RK[6] ^ RK[13];
RK[15] = RK[7] ^ RK[14];
}
break;
}
/* setup decryption round keys */
for( i = 0; i <= ctx->nr; i++ )
{
ctx->drk[i * 4 ] = ctx->erk[( ctx->nr - i ) * 4 ];
ctx->drk[i * 4 + 1] = ctx->erk[( ctx->nr - i ) * 4 + 1];
ctx->drk[i * 4 + 2] = ctx->erk[( ctx->nr - i ) * 4 + 2];
ctx->drk[i * 4 + 3] = ctx->erk[( ctx->nr - i ) * 4 + 3];
}
for( i = 1, RK = ctx->drk + 4; i < ctx->nr; i++, RK += 4 )
{
RK[0] = RT0[ FSb[ (unsigned char) ( RK[0] >> 24 ) ] ] ^
RT1[ FSb[ (unsigned char) ( RK[0] >> 16 ) ] ] ^
RT2[ FSb[ (unsigned char) ( RK[0] >> 8 ) ] ] ^
RT3[ FSb[ (unsigned char) ( RK[0] ) ] ];
RK[1] = RT0[ FSb[ (unsigned char) ( RK[1] >> 24 ) ] ] ^
RT1[ FSb[ (unsigned char) ( RK[1] >> 16 ) ] ] ^
RT2[ FSb[ (unsigned char) ( RK[1] >> 8 ) ] ] ^
RT3[ FSb[ (unsigned char) ( RK[1] ) ] ];
RK[2] = RT0[ FSb[ (unsigned char) ( RK[2] >> 24 ) ] ] ^
RT1[ FSb[ (unsigned char) ( RK[2] >> 16 ) ] ] ^
RT2[ FSb[ (unsigned char) ( RK[2] >> 8 ) ] ] ^
RT3[ FSb[ (unsigned char) ( RK[2] ) ] ];
RK[3] = RT0[ FSb[ (unsigned char) ( RK[3] >> 24 ) ] ] ^
RT1[ FSb[ (unsigned char) ( RK[3] >> 16 ) ] ] ^
RT2[ FSb[ (unsigned char) ( RK[3] >> 8 ) ] ] ^
RT3[ FSb[ (unsigned char) ( RK[3] ) ] ];
}
return( 0 );
}
//--------------------------------------------------------------------------------------------------
// 128-bit block encryption routine
void aes_encrypt( struct aes_context *ctx, unsigned char data[16] )
{
uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->erk;
GET_UINT32( X0, data, 0 ); X0 ^= RK[0];
GET_UINT32( X1, data, 4 ); X1 ^= RK[1];
GET_UINT32( X2, data, 8 ); X2 ^= RK[2];
GET_UINT32( X3, data, 12 ); X3 ^= RK[3];
#define FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
RK += 4; \
\
X0 = RK[0] ^ FT0[ (uint8) ( Y0 >> 24 ) ] ^ \
FT1[ (uint8) ( Y1 >> 16 ) ] ^ \
FT2[ (uint8) ( Y2 >> 8 ) ] ^ \
FT3[ (uint8) ( Y3 ) ]; \
\
X1 = RK[1] ^ FT0[ (uint8) ( Y1 >> 24 ) ] ^ \
FT1[ (uint8) ( Y2 >> 16 ) ] ^ \
FT2[ (uint8) ( Y3 >> 8 ) ] ^ \
FT3[ (uint8) ( Y0 ) ]; \
\
X2 = RK[2] ^ FT0[ (uint8) ( Y2 >> 24 ) ] ^ \
FT1[ (uint8) ( Y3 >> 16 ) ] ^ \
FT2[ (uint8) ( Y0 >> 8 ) ] ^ \
FT3[ (uint8) ( Y1 ) ]; \
\
X3 = RK[3] ^ FT0[ (uint8) ( Y3 >> 24 ) ] ^ \
FT1[ (uint8) ( Y0 >> 16 ) ] ^ \
FT2[ (uint8) ( Y1 >> 8 ) ] ^ \
FT3[ (uint8) ( Y2 ) ]; \
}
FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 1 */
FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 2 */
FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 3 */
FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 4 */
FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 5 */
FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 6 */
FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 7 */
FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 8 */
FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 9 */
if( ctx->nr > 10 )
{
FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 10 */
FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 11 */
}
if( ctx->nr > 12 )
{
FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 12 */
FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 13 */
}
/* last round */
RK += 4;
X0 = RK[0] ^ ( FSb[ (unsigned char) ( Y0 >> 24 ) ] << 24 ) ^
( FSb[ (unsigned char) ( Y1 >> 16 ) ] << 16 ) ^
( FSb[ (unsigned char) ( Y2 >> 8 ) ] << 8 ) ^
( FSb[ (unsigned char) ( Y3 ) ] );
X1 = RK[1] ^ ( FSb[ (unsigned char) ( Y1 >> 24 ) ] << 24 ) ^
( FSb[ (unsigned char) ( Y2 >> 16 ) ] << 16 ) ^
( FSb[ (unsigned char) ( Y3 >> 8 ) ] << 8 ) ^
( FSb[ (unsigned char) ( Y0 ) ] );
X2 = RK[2] ^ ( FSb[ (unsigned char) ( Y2 >> 24 ) ] << 24 ) ^
( FSb[ (unsigned char) ( Y3 >> 16 ) ] << 16 ) ^
( FSb[ (unsigned char) ( Y0 >> 8 ) ] << 8 ) ^
( FSb[ (unsigned char) ( Y1 ) ] );
X3 = RK[3] ^ ( FSb[ (unsigned char) ( Y3 >> 24 ) ] << 24 ) ^
( FSb[ (unsigned char) ( Y0 >> 16 ) ] << 16 ) ^
( FSb[ (unsigned char) ( Y1 >> 8 ) ] << 8 ) ^
( FSb[ (unsigned char) ( Y2 ) ] );
PUT_UINT32( X0, data, 0 );
PUT_UINT32( X1, data, 4 );
PUT_UINT32( X2, data, 8 );
PUT_UINT32( X3, data, 12 );
}
//--------------------------------------------------------------------------------------------------
// 128-bit block decryption routine
void aes_decrypt( struct aes_context *ctx, unsigned char data[16] )
{
uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;
RK = ctx->drk;
GET_UINT32( X0, data, 0 ); X0 ^= RK[0];
GET_UINT32( X1, data, 4 ); X1 ^= RK[1];
GET_UINT32( X2, data, 8 ); X2 ^= RK[2];
GET_UINT32( X3, data, 12 ); X3 ^= RK[3];
#define RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \
{ \
RK += 4; \
\
X0 = RK[0] ^ RT0[ (uint8) ( Y0 >> 24 ) ] ^ \
RT1[ (uint8) ( Y3 >> 16 ) ] ^ \
RT2[ (uint8) ( Y2 >> 8 ) ] ^ \
RT3[ (uint8) ( Y1 ) ]; \
\
X1 = RK[1] ^ RT0[ (uint8) ( Y1 >> 24 ) ] ^ \
RT1[ (uint8) ( Y0 >> 16 ) ] ^ \
RT2[ (uint8) ( Y3 >> 8 ) ] ^ \
RT3[ (uint8) ( Y2 ) ]; \
\
X2 = RK[2] ^ RT0[ (uint8) ( Y2 >> 24 ) ] ^ \
RT1[ (uint8) ( Y1 >> 16 ) ] ^ \
RT2[ (uint8) ( Y0 >> 8 ) ] ^ \
RT3[ (uint8) ( Y3 ) ]; \
\
X3 = RK[3] ^ RT0[ (uint8) ( Y3 >> 24 ) ] ^ \
RT1[ (uint8) ( Y2 >> 16 ) ] ^ \
RT2[ (uint8) ( Y1 >> 8 ) ] ^ \
RT3[ (uint8) ( Y0 ) ]; \
}
RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 1 */
RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 2 */
RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 3 */
RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 4 */
RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 5 */
RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 6 */
RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 7 */
RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 8 */
RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 9 */
if( ctx->nr > 10 )
{
RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 10 */
RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 11 */
}
if( ctx->nr > 12 )
{
RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); /* round 12 */
RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); /* round 13 */
}
/* last round */
RK += 4;
X0 = RK[0] ^ ( RSb[ (unsigned char) ( Y0 >> 24 ) ] << 24 ) ^
( RSb[ (unsigned char) ( Y3 >> 16 ) ] << 16 ) ^
( RSb[ (unsigned char) ( Y2 >> 8 ) ] << 8 ) ^
( RSb[ (unsigned char) ( Y1 ) ] );
X1 = RK[1] ^ ( RSb[ (unsigned char) ( Y1 >> 24 ) ] << 24 ) ^
( RSb[ (unsigned char) ( Y0 >> 16 ) ] << 16 ) ^
( RSb[ (unsigned char) ( Y3 >> 8 ) ] << 8 ) ^
( RSb[ (unsigned char) ( Y2 ) ] );
X2 = RK[2] ^ ( RSb[ (unsigned char) ( Y2 >> 24 ) ] << 24 ) ^
( RSb[ (unsigned char) ( Y1 >> 16 ) ] << 16 ) ^
( RSb[ (unsigned char) ( Y0 >> 8 ) ] << 8 ) ^
( RSb[ (unsigned char) ( Y3 ) ] );
X3 = RK[3] ^ ( RSb[ (unsigned char) ( Y3 >> 24 ) ] << 24 ) ^
( RSb[ (unsigned char) ( Y2 >> 16 ) ] << 16 ) ^
( RSb[ (unsigned char) ( Y1 >> 8 ) ] << 8 ) ^
( RSb[ (unsigned char) ( Y0 ) ] );
PUT_UINT32( X0, data, 0 );
PUT_UINT32( X1, data, 4 );
PUT_UINT32( X2, data, 8 );
PUT_UINT32( X3, data, 12 );
}
}//namespace
namespace hgl
{
namespace crypt
{
/**
* AES算法加密函数
* @param data
* @param key
* @param keysize (128,192,256)
*/
void AesEncrypt(uint8 data[16], uint8 *key, int keysize)
{
aes_context ac;
aes_set_key(&ac, key, keysize);
aes_encrypt(&ac, data);
}
/**
* AES算法解密函数
* @param data
* @param key
* @param keysize (128,192,256)
*/
void AesDecrypt(uint8 data[16], uint8 *key, int keysize)
{
aes_context ac;
aes_set_key(&ac, key, keysize);
aes_decrypt(&ac, data);
}
}//namespace crypt
}//namespace hgl
//--------------------------------------------------------------------------------------------------
/*
#ifdef TEST
#include <BaseString.h>
#include <stdio.h>
// those are the standard FIPS 197 test vectors
static unsigned char KEYs[3][32] =
{
"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F",
"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F" \
"\x10\x11\x12\x13\x14\x15\x16\x17",
"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F" \
"\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1A\x1B\x1C\x1D\x1E\x1F"
};
static unsigned char PT[16] =
"\x00\x11\x22\x33\x44\x55\x66\x77\x88\x99\xAA\xBB\xCC\xDD\xEE\xFF";
static unsigned char CTs[3][16] =
{
"\x69\xC4\xE0\xD8\x6A\x7B\x04\x30\xD8\xCD\xB7\x80\x70\xB4\xC5\x5A",
"\xDD\xA9\x7C\xA4\x86\x4C\xDF\xE0\x6E\xAF\x70\xA0\xEC\x0D\x71\x91",
"\x8E\xA2\xB7\xCA\x51\x67\x45\xBF\xEA\xFC\x49\x90\x4B\x49\x60\x89"
};
int aes_set_key( struct aes_context *ctx, unsigned char *key, int nbits );
void aes_encrypt( struct aes_context *ctx, unsigned char data[16] );
void aes_decrypt( struct aes_context *ctx, unsigned char data[16] );
int main( void )
{
int i;
struct aes_context ctx;
unsigned char data[16];
for( i = 0; i < 3; i++ )
{
memcpy( data, PT, 16 );
aes_set_key( &ctx, KEYs[i], 128 + i * 64);
aes_encrypt( &ctx, data );
printf( "encryption test %d ", i + 1 );
if( ! memcmp( data, CTs[i], 16 ) )
{
printf( "passed\n" );
}
else
{
printf( "failed\n" );
return( 1 );
}
}
for( i = 0; i < 3; i++ )
{
memcpy( data, CTs[i], 16 );
aes_set_key( &ctx, KEYs[i], 128 + i * 64);
aes_decrypt( &ctx, data );
printf( "decryption test %d ", i + 1 );
if( ! memcmp( data, PT, 16 ) )
{
printf( "passed\n" );
}
else
{
printf( "failed\n" );
return( 1 );
}
}
return( 0 );
}
#endif*/

130
src/crypt/base64.cpp Normal file
View File

@ -0,0 +1,130 @@
#include<hgl/type/String.h>
#include<hgl/type/StrChar.h>
#include<hgl/io/OutputStream.h>
namespace hgl
{
namespace crypt
{
namespace
{
constexpr uchar base64_chars[]= "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
const uchar base64_char_find(const uchar ch)
{
for(uchar i=0;i<sizeof(base64_chars);i++)
if(base64_chars[i]==ch)
return i;
return 0;
}
}//namespace
bool base64_encode(io::OutputStream *os,const uchar *input, size_t len)
{
int i = 0;
int j = 0;
uchar char_array_3[3];
uchar char_array_4[4];
uchar out[4];
while (len--)
{
char_array_3[i++] = *(input++);
if (i != 3)
continue;
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) +
((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) +
((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for(i = 0; i <4 ; i++)
out[i]=base64_chars[char_array_4[i]];
if(os->Write(out,4)!=4)
return(false);
i = 0;
}
if (i)
{
for(j = i; j < 3; j++)
char_array_3[j] = '\0';
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) +
((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) +
((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (j = 0; j < i + 1; j++)
out[j]=base64_chars[char_array_4[j]];
if(os->Write(out,i+1)!=i+1)
return(false);
for(j=0;j<3-i;j++)
out[j]='=';
if(os->Write(out,3-i)!=3-i)
return(false);
}
return(true);
}
bool base64_decode(io::OutputStream *os,const uchar *input,size_t in_len)
{
int i = 0;
int j = 0;
int in_ = 0;
uchar char_array_4[4], char_array_3[3];
while (in_len-- && ( input[in_] != '=') && isbase64(input[in_]))
{
char_array_4[i++] = input[in_]; in_++;
if (i ==4)
{
for (i = 0; i <4; i++)
char_array_4[i] = base64_char_find(char_array_4[i]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
if(os->Write(char_array_3,3)!=3)
return(false);
i = 0;
}
}
if (i)
{
for (j = i; j <4; j++)
char_array_4[j] = 0;
for (j = 0; j <4; j++)
char_array_4[j] = base64_char_find(char_array_4[j]);
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
if(os->Write(char_array_3,i-1)!=i-1)
return(false);
}
return(true);
}
}//namespace crypt
}//namespace hgl

412
src/crypt/ecc_arm.inc Normal file
View File

@ -0,0 +1,412 @@
#if !asm_add
static uint32_t vli_add(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right)
{
uint32_t l_counter = uECC_WORDS;
uint32_t l_carry = 0; /* carry = 0 initially */
uint32_t l_left;
uint32_t l_right;
__asm__ volatile (
".syntax unified \n\t"
"1: \n\t"
"ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
"ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
"lsrs %[carry], #1 \n\t" /* Set up carry flag (l_carry = 0 after this). */
"adcs %[left], %[right] \n\t" /* Add with carry. */
"adcs %[carry], %[carry] \n\t" /* Store carry bit in l_carry. */
"stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
"subs %[ctr], #1 \n\t" /* Decrement index. */
"bne 1b \n\t" /* Loop until index == 0. */
#if (uECC_PLATFORM != uECC_arm_thumb2)
".syntax divided \n\t"
#endif
#if (uECC_PLATFORM == uECC_arm_thumb)
: [dptr] "+l" (p_result), [lptr] "+l" (p_left), [rptr] "+l" (p_right),
[ctr] "+l" (l_counter), [carry] "+l" (l_carry), [left] "=l" (l_left), [right] "=l" (l_right)
#else
: [dptr] "+r" (p_result), [lptr] "+r" (p_left), [rptr] "+r" (p_right),
[ctr] "+r" (l_counter), [carry] "+r" (l_carry), [left] "=r" (l_left), [right] "=r" (l_right)
#endif
:
: "cc", "memory"
);
return l_carry;
}
#define asm_add 1
#endif
#if !asm_sub
static uint32_t vli_sub(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right)
{
uint32_t l_counter = uECC_WORDS;
uint32_t l_carry = 1; /* carry = 1 initially (means don't borrow) */
uint32_t l_left;
uint32_t l_right;
__asm__ volatile (
".syntax unified \n\t"
"1: \n\t"
"ldmia %[lptr]!, {%[left]} \n\t" /* Load left word. */
"ldmia %[rptr]!, {%[right]} \n\t" /* Load right word. */
"lsrs %[carry], #1 \n\t" /* Set up carry flag (l_carry = 0 after this). */
"sbcs %[left], %[right] \n\t" /* Subtract with borrow. */
"adcs %[carry], %[carry] \n\t" /* Store carry bit in l_carry. */
"stmia %[dptr]!, {%[left]} \n\t" /* Store result word. */
"subs %[ctr], #1 \n\t" /* Decrement index. */
"bne 1b \n\t" /* Loop until index == 0. */
#if (uECC_PLATFORM != uECC_arm_thumb2)
".syntax divided \n\t"
#endif
#if (uECC_PLATFORM == uECC_arm_thumb)
: [dptr] "+l" (p_result), [lptr] "+l" (p_left), [rptr] "+l" (p_right),
[ctr] "+l" (l_counter), [carry] "+l" (l_carry), [left] "=l" (l_left), [right] "=l" (l_right)
#else
: [dptr] "+r" (p_result), [lptr] "+r" (p_left), [rptr] "+r" (p_right),
[ctr] "+r" (l_counter), [carry] "+r" (l_carry), [left] "=r" (l_left), [right] "=r" (l_right)
#endif
:
: "cc", "memory"
);
return !l_carry;
}
#define asm_sub 1
#endif
#if !asm_mult
static void vli_mult(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right)
{
#if (uECC_PLATFORM != uECC_arm_thumb)
uint32_t c0 = 0;
uint32_t c1 = 0;
uint32_t c2 = 0;
uint32_t k = 0;
uint32_t i;
uint32_t t0, t1;
__asm__ volatile (
".syntax unified \n\t"
"1: \n\t" /* outer loop (k < uECC_WORDS) */
"movs %[i], #0 \n\t" /* i = 0 */
"b 3f \n\t"
"2: \n\t" /* outer loop (k >= uECC_WORDS) */
"movs %[i], %[k] \n\t" /* i = k */
"subs %[i], %[eccdm1] \n\t" /* i = k - (uECC_WORDS - 1) (times 4) */
"3: \n\t" /* inner loop */
"subs %[t0], %[k], %[i] \n\t" /* t0 = k-i */
"ldr %[t1], [%[right], %[t0]] \n\t" /* t1 = p_right[k-i] */
"ldr %[t0], [%[left], %[i]] \n\t" /* t0 = p_left[i] */
"umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = p_left[i] * p_right[k-i] */
"adds %[c0], %[t0] \n\t" /* add low word to c0 */
"adcs %[c1], %[t1] \n\t" /* add high word to c1, including carry */
"adcs %[c2], #0 \n\t" /* add carry to c2 */
"adds %[i], #4 \n\t" /* i += 4 */
"cmp %[i], %[eccd] \n\t" /* i < uECC_WORDS (times 4)? */
"bge 4f \n\t" /* if not, exit the loop */
"cmp %[i], %[k] \n\t" /* i <= k? */
"ble 3b \n\t" /* if so, continue looping */
"4: \n\t" /* end inner loop */
"str %[c0], [%[result], %[k]] \n\t" /* p_result[k] = c0 */
"mov %[c0], %[c1] \n\t" /* c0 = c1 */
"mov %[c1], %[c2] \n\t" /* c1 = c2 */
"movs %[c2], #0 \n\t" /* c2 = 0 */
"adds %[k], #4 \n\t" /* k += 4 */
"cmp %[k], %[eccd] \n\t" /* k < uECC_WORDS (times 4) ? */
"blt 1b \n\t" /* if not, loop back, start with i = 0 */
"cmp %[k], %[eccd2m1] \n\t" /* k < uECC_WORDS * 2 - 1 (times 4) ? */
"blt 2b \n\t" /* if not, loop back, start with i = (k+1) - uECC_WORDS */
/* end outer loop */
"str %[c0], [%[result], %[k]] \n\t" /* p_result[uECC_WORDS * 2 - 1] = c0 */
#if (uECC_PLATFORM != uECC_arm_thumb2)
".syntax divided \n\t"
#endif
: [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2), [k] "+r" (k), [i] "=&r" (i), [t0] "=&r" (t0), [t1] "=&r" (t1)
: [result] "r" (p_result), [left] "r" (p_left), [right] "r" (p_right),
[eccd] "I" (uECC_WORDS * 4), [eccdm1] "I" ((uECC_WORDS-1) * 4), [eccd2m1] "I" ((uECC_WORDS * 2 - 1) * 4)
: "cc", "memory"
);
#else /* Thumb-1 */
register uint32_t *r0 __asm__("r0") = p_result;
register uint32_t *r1 __asm__("r1") = p_left;
register uint32_t *r2 __asm__("r2") = p_right;
__asm__ volatile (
".syntax unified \n\t"
"movs r3, #0 \n\t" /* c0 = 0 */
"movs r4, #0 \n\t" /* c1 = 0 */
"movs r5, #0 \n\t" /* c2 = 0 */
"movs r6, #0 \n\t" /* k = 0 */
"push {r0} \n\t" /* keep p_result on the stack */
"1: \n\t" /* outer loop (k < uECC_WORDS) */
"movs r7, #0 \n\t" /* r7 = i = 0 */
"b 3f \n\t"
"2: \n\t" /* outer loop (k >= uECC_WORDS) */
"movs r7, r6 \n\t" /* r7 = k */
"subs r7, %[eccdm1] \n\t" /* r7 = i = k - (uECC_WORDS - 1) (times 4) */
"3: \n\t" /* inner loop */
"push {r3, r4, r5, r6} \n\t" /* push things, r3 (c0) is at the top of stack. */
"subs r0, r6, r7 \n\t" /* r0 = k-i */
"ldr r4, [r2, r0] \n\t" /* r4 = p_right[k-i] */
"ldr r0, [r1, r7] \n\t" /* r0 = p_left[i] */
"lsrs r3, r0, #16 \n\t" /* r3 = a1 */
"uxth r0, r0 \n\t" /* r0 = a0 */
"lsrs r5, r4, #16 \n\t" /* r5 = b1 */
"uxth r4, r4 \n\t" /* r4 = b0 */
"movs r6, r3 \n\t" /* r6 = a1 */
"muls r6, r5, r6 \n\t" /* r6 = a1*b1 */
"muls r3, r4, r3 \n\t" /* r3 = b0*a1 */
"muls r5, r0, r5 \n\t" /* r5 = a0*b1 */
"muls r0, r4, r0 \n\t" /* r0 = a0*b0 */
"movs r4, #0 \n\t" /* r4 = 0 */
"adds r3, r5 \n\t" /* r3 = b0*a1 + a0*b1 */
"adcs r4, r4 \n\t" /* r4 = carry */
"lsls r4, #16 \n\t" /* r4 = carry << 16 */
"adds r6, r4 \n\t" /* r6 = a1*b1 + carry */
"lsls r4, r3, #16 \n\t" /* r4 = (b0*a1 + a0*b1) << 16 */
"lsrs r3, #16 \n\t" /* r3 = (b0*a1 + a0*b1) >> 16 */
"adds r0, r4 \n\t" /* r0 = low word = a0*b0 + ((b0*a1 + a0*b1) << 16) */
"adcs r6, r3 \n\t" /* r6 = high word = a1*b1 + carry + ((b0*a1 + a0*b1) >> 16) */
"pop {r3, r4, r5} \n\t" /* r3 = c0, r4 = c1, r5 = c2 */
"adds r3, r0 \n\t" /* add low word to c0 */
"adcs r4, r6 \n\t" /* add high word to c1, including carry */
"movs r0, #0 \n\t" /* r0 = 0 (does not affect carry bit) */
"adcs r5, r0 \n\t" /* add carry to c2 */
"pop {r6} \n\t" /* r6 = k */
"adds r7, #4 \n\t" /* i += 4 */
"cmp r7, %[eccd] \n\t" /* i < uECC_WORDS (times 4)? */
"bge 4f \n\t" /* if not, exit the loop */
"cmp r7, r6 \n\t" /* i <= k? */
"ble 3b \n\t" /* if so, continue looping */
"4: \n\t" /* end inner loop */
"ldr r0, [sp, #0] \n\t" /* r0 = p_result */
"str r3, [r0, r6] \n\t" /* p_result[k] = c0 */
"mov r3, r4 \n\t" /* c0 = c1 */
"mov r4, r5 \n\t" /* c1 = c2 */
"movs r5, #0 \n\t" /* c2 = 0 */
"adds r6, #4 \n\t" /* k += 4 */
"cmp r6, %[eccd] \n\t" /* k < uECC_WORDS (times 4) ? */
"blt 1b \n\t" /* if not, loop back, start with i = 0 */
"cmp r6, %[eccd2m1] \n\t" /* k < uECC_WORDS * 2 - 1 (times 4) ? */
"blt 2b \n\t" /* if not, loop back, start with i = (k+1) - uECC_WORDS */
/* end outer loop */
"str r3, [r0, r6] \n\t" /* p_result[uECC_WORDS * 2 - 1] = c0 */
"pop {r0} \n\t" /* pop p_result off the stack */
".syntax divided \n\t"
:
: [r0] "l" (r0), [r1] "l" (r1), [r2] "l" (r2), [eccd] "I" (uECC_WORDS * 4), [eccdm1] "I" ((uECC_WORDS-1) * 4), [eccd2m1] "I" ((uECC_WORDS * 2 - 1) * 4)
: "r3", "r4", "r5", "r6", "r7", "cc", "memory"
);
#endif
}
#define asm_mult 1
#endif /* !asm_mult */
#if uECC_SQUARE_FUNC
#if !asm_square
static void vli_square(uint32_t *p_result, uint32_t *p_left)
{
#if (uECC_PLATFORM != uECC_arm_thumb)
uint32_t c0 = 0;
uint32_t c1 = 0;
uint32_t c2 = 0;
uint32_t k = 0;
uint32_t i, tt;
uint32_t t0, t1;
__asm__ volatile (
".syntax unified \n\t"
"1: \n\t" /* outer loop (k < uECC_WORDS) */
"movs %[i], #0 \n\t" /* i = 0 */
"b 3f \n\t"
"2: \n\t" /* outer loop (k >= uECC_WORDS) */
"movs %[i], %[k] \n\t" /* i = k */
"subs %[i], %[eccdm1] \n\t" /* i = k - (uECC_WORDS - 1) (times 4) */
"3: \n\t" /* inner loop */
"subs %[tt], %[k], %[i] \n\t" /* tt = k-i */
"ldr %[t1], [%[left], %[tt]] \n\t" /* t1 = p_left[k-i] */
"ldr %[t0], [%[left], %[i]] \n\t" /* t0 = p_left[i] */
"umull %[t0], %[t1], %[t0], %[t1] \n\t" /* (t0, t1) = p_left[i] * p_right[k-i] */
"cmp %[i], %[tt] \n\t" /* (i < k-i) ? */
"bge 4f \n\t" /* if i >= k-i, skip */
"lsls %[t1], #1 \n\t" /* high word << 1 */
"adc %[c2], #0 \n\t" /* add carry bit to c2 */
"lsls %[t0], #1 \n\t" /* low word << 1 */
"adc %[t1], #0 \n\t" /* add carry bit to high word */
"4: \n\t"
"adds %[c0], %[t0] \n\t" /* add low word to c0 */
"adcs %[c1], %[t1] \n\t" /* add high word to c1, including carry */
"adc %[c2], #0 \n\t" /* add carry to c2 */
"adds %[i], #4 \n\t" /* i += 4 */
"cmp %[i], %[k] \n\t" /* i <= k? */
"bge 5f \n\t" /* if not, exit the loop */
"subs %[tt], %[k], %[i] \n\t" /* tt = k-i */
"cmp %[i], %[tt] \n\t" /* i <= k-i? */
"ble 3b \n\t" /* if so, continue looping */
"5: \n\t" /* end inner loop */
"str %[c0], [%[result], %[k]] \n\t" /* p_result[k] = c0 */
"mov %[c0], %[c1] \n\t" /* c0 = c1 */
"mov %[c1], %[c2] \n\t" /* c1 = c2 */
"movs %[c2], #0 \n\t" /* c2 = 0 */
"adds %[k], #4 \n\t" /* k += 4 */
"cmp %[k], %[eccd] \n\t" /* k < uECC_WORDS (times 4) ? */
"blt 1b \n\t" /* if not, loop back, start with i = 0 */
"cmp %[k], %[eccd2m1] \n\t" /* k < uECC_WORDS * 2 - 1 (times 4) ? */
"blt 2b \n\t" /* if not, loop back, start with i = (k+1) - uECC_WORDS */
/* end outer loop */
"str %[c0], [%[result], %[k]] \n\t" /* p_result[uECC_WORDS * 2 - 1] = c0 */
#if (uECC_PLATFORM != uECC_arm_thumb2)
".syntax divided \n\t"
#endif
: [c0] "+r" (c0), [c1] "+r" (c1), [c2] "+r" (c2), [k] "+r" (k), [i] "=&r" (i), [tt] "=&r" (tt), [t0] "=&r" (t0), [t1] "=&r" (t1)
: [result] "r" (p_result), [left] "r" (p_left),
[eccd] "I" (uECC_WORDS * 4), [eccdm1] "I" ((uECC_WORDS-1) * 4), [eccd2m1] "I" ((uECC_WORDS * 2 - 1) * 4)
: "cc", "memory"
);
#else
register uint32_t *r0 __asm__("r0") = p_result;
register uint32_t *r1 __asm__("r1") = p_left;
__asm__ volatile (
".syntax unified \n\t"
"movs r2, #0 \n\t" /* c0 = 0 */
"movs r3, #0 \n\t" /* c1 = 0 */
"movs r4, #0 \n\t" /* c2 = 0 */
"movs r5, #0 \n\t" /* k = 0 */
"push {r0} \n\t" /* keep p_result on the stack */
"1: \n\t" /* outer loop (k < uECC_WORDS) */
"movs r6, #0 \n\t" /* r6 = i = 0 */
"b 3f \n\t"
"2: \n\t" /* outer loop (k >= uECC_WORDS) */
"movs r6, r5 \n\t" /* r6 = k */
"subs r6, %[eccdm1] \n\t" /* r6 = i = k - (uECC_WORDS - 1) (times 4) */
"3: \n\t" /* inner loop */
"push {r2, r3, r4, r5} \n\t" /* push things, r2 (c0) is at the top of stack. */
"subs r7, r5, r6 \n\t" /* r7 = k-i */
"ldr r3, [r1, r7] \n\t" /* r3 = p_left[k-i] */
"ldr r0, [r1, r6] \n\t" /* r0 = p_left[i] */
"lsrs r2, r0, #16 \n\t" /* r2 = a1 */
"uxth r0, r0 \n\t" /* r0 = a0 */
"lsrs r4, r3, #16 \n\t" /* r4 = b1 */
"uxth r3, r3 \n\t" /* r3 = b0 */
"movs r5, r2 \n\t" /* r5 = a1 */
"muls r5, r4, r5 \n\t" /* r5 = a1*b1 */
"muls r2, r3, r2 \n\t" /* r2 = b0*a1 */
"muls r4, r0, r4 \n\t" /* r4 = a0*b1 */
"muls r0, r3, r0 \n\t" /* r0 = a0*b0 */
"movs r3, #0 \n\t" /* r3 = 0 */
"adds r2, r4 \n\t" /* r2 = b0*a1 + a0*b1 */
"adcs r3, r3 \n\t" /* r3 = carry */
"lsls r3, #16 \n\t" /* r3 = carry << 16 */
"adds r5, r3 \n\t" /* r5 = a1*b1 + carry */
"lsls r3, r2, #16 \n\t" /* r3 = (b0*a1 + a0*b1) << 16 */
"lsrs r2, #16 \n\t" /* r2 = (b0*a1 + a0*b1) >> 16 */
"adds r0, r3 \n\t" /* r0 = low word = a0*b0 + ((b0*a1 + a0*b1) << 16) */
"adcs r5, r2 \n\t" /* r5 = high word = a1*b1 + carry + ((b0*a1 + a0*b1) >> 16) */
"movs r3, #0 \n\t" /* r3 = 0 */
"cmp r6, r7 \n\t" /* (i < k-i) ? */
"mov r7, r3 \n\t" /* r7 = 0 (does not affect condition)*/
"bge 4f \n\t" /* if i >= k-i, skip */
"lsls r5, #1 \n\t" /* high word << 1 */
"adcs r7, r3 \n\t" /* r7 = carry bit for c2 */
"lsls r0, #1 \n\t" /* low word << 1 */
"adcs r5, r3 \n\t" /* add carry from shift to high word */
"4: \n\t"
"pop {r2, r3, r4} \n\t" /* r2 = c0, r3 = c1, r4 = c2 */
"adds r2, r0 \n\t" /* add low word to c0 */
"adcs r3, r5 \n\t" /* add high word to c1, including carry */
"movs r0, #0 \n\t" /* r0 = 0 (does not affect carry bit) */
"adcs r4, r0 \n\t" /* add carry to c2 */
"adds r4, r7 \n\t" /* add carry from doubling (if any) */
"pop {r5} \n\t" /* r5 = k */
"adds r6, #4 \n\t" /* i += 4 */
"cmp r6, r5 \n\t" /* i <= k? */
"bge 5f \n\t" /* if not, exit the loop */
"subs r7, r5, r6 \n\t" /* r7 = k-i */
"cmp r6, r7 \n\t" /* i <= k-i? */
"ble 3b \n\t" /* if so, continue looping */
"5: \n\t" /* end inner loop */
"ldr r0, [sp, #0] \n\t" /* r0 = p_result */
"str r2, [r0, r5] \n\t" /* p_result[k] = c0 */
"mov r2, r3 \n\t" /* c0 = c1 */
"mov r3, r4 \n\t" /* c1 = c2 */
"movs r4, #0 \n\t" /* c2 = 0 */
"adds r5, #4 \n\t" /* k += 4 */
"cmp r5, %[eccd] \n\t" /* k < uECC_WORDS (times 4) ? */
"blt 1b \n\t" /* if not, loop back, start with i = 0 */
"cmp r5, %[eccd2m1] \n\t" /* k < uECC_WORDS * 2 - 1 (times 4) ? */
"blt 2b \n\t" /* if not, loop back, start with i = (k+1) - uECC_WORDS */
/* end outer loop */
"str r2, [r0, r5] \n\t" /* p_result[uECC_WORDS * 2 - 1] = c0 */
"pop {r0} \n\t" /* pop p_result off the stack */
".syntax divided \n\t"
: [r0] "+l" (r0), [r1] "+l" (r1)
: [eccd] "I" (uECC_WORDS * 4), [eccdm1] "I" ((uECC_WORDS-1) * 4), [eccd2m1] "I" ((uECC_WORDS * 2 - 1) * 4)
: "r2", "r3", "r4", "r5", "r6", "r7", "cc", "memory"
);
#endif
}
#define asm_square 1
#endif /* !asm_square */
#endif /* uECC_SQUARE_FUNC */

16276
src/crypt/ecc_avr.inc Normal file

File diff suppressed because it is too large Load Diff

155
src/crypt/rc4.cpp Normal file
View File

@ -0,0 +1,155 @@
#include<hgl/type/DataType.h>
namespace
{
//--------------------------------------------------------------------------------------------------
struct rc4_state
{
int x, y, m[256];
};
//--------------------------------------------------------------------------------------------------
void rc4_setup( struct rc4_state *s, unsigned char *key, int length )
{
int i, j, k, *m, a;
s->x = 0;
s->y = 0;
m = s->m;
for( i = 0; i < 256; i++ )
{
m[i] = i;
}
j = k = 0;
for( i = 0; i < 256; i++ )
{
a = m[i];
j = (unsigned char) ( j + a + key[k] );
m[i] = m[j]; m[j] = a;
if( ++k >= length ) k = 0;
}
}
//--------------------------------------------------------------------------------------------------
void rc4_crypt( struct rc4_state *s, unsigned char *data, int length )
{
int i, x, y, *m, a, b;
x = s->x;
y = s->y;
m = s->m;
for( i = 0; i < length; i++ )
{
x = (unsigned char) ( x + 1 ); a = m[x];
y = (unsigned char) ( y + a );
m[x] = b = m[y];
m[y] = a;
data[i] ^= m[(unsigned char) ( a + b )];
}
s->x = x;
s->y = y;
}
}//namespace
//--------------------------------------------------------------------------------------------------
namespace hgl
{
namespace crypt
{
/**
* RC4算法加密函数
* @param data
* @param datasize
* @param key
* @param keysize ()
*/
void RC4Encrypt(uint8 *data, int datasize, uint8 *key, int keysize)
{
rc4_state rs;
rc4_setup(&rs, key, keysize);
rc4_crypt(&rs, data, datasize);
}
}//namespace crypt
}//namespace hgl
//--------------------------------------------------------------------------------------------------
/*
#ifdef TEST
#include <BaseString.h>
#include <stdio.h>
// the following tests come from the OpenSSL test suite
// (crypto/rc4/rc4test.c)
static unsigned char keys[7][30]={
{8,0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef},
{8,0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef},
{8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00},
{4,0xef,0x01,0x23,0x45},
{8,0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef},
{4,0xef,0x01,0x23,0x45},
};
static unsigned char data_len[7]={8,8,8,20,28,10};
static unsigned char data[7][30]={
{0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xff},
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff},
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff},
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0xff},
{0x12,0x34,0x56,0x78,0x9A,0xBC,0xDE,0xF0,
0x12,0x34,0x56,0x78,0x9A,0xBC,0xDE,0xF0,
0x12,0x34,0x56,0x78,0x9A,0xBC,0xDE,0xF0,
0x12,0x34,0x56,0x78,0xff},
{0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xff},
{0},
};
static unsigned char output[7][30]={
{0x75,0xb7,0x87,0x80,0x99,0xe0,0xc5,0x96,0x00},
{0x74,0x94,0xc2,0xe7,0x10,0x4b,0x08,0x79,0x00},
{0xde,0x18,0x89,0x41,0xa3,0x37,0x5d,0x3a,0x00},
{0xd6,0xa1,0x41,0xa7,0xec,0x3c,0x38,0xdf,
0xbd,0x61,0x5a,0x11,0x62,0xe1,0xc7,0xba,
0x36,0xb6,0x78,0x58,0x00},
{0x66,0xa0,0x94,0x9f,0x8a,0xf7,0xd6,0x89,
0x1f,0x7f,0x83,0x2b,0xa8,0x33,0xc0,0x0c,
0x89,0x2e,0xbe,0x30,0x14,0x3c,0xe2,0x87,
0x40,0x01,0x1e,0xcf,0x00},
{0xd6,0xa1,0x41,0xa7,0xec,0x3c,0x38,0xdf,0xbd,0x61,0x00},
{0},
};
int main( void )
{
int i;
struct rc4_state s;
unsigned char buffer[30];
for( i = 0; i < 7; i++ )
{
rc4_setup( &s, &keys[i][1], keys[i][0] );
memcpy( buffer, data[i], data_len[i] );
rc4_crypt( &s, buffer, data_len[i] );
printf( "test %d ", i + 1 );
if( ! memcmp( buffer, output[i], data_len[i] ) )
{
printf( "passed\n" );
}
else
{
printf( "failed\n" );
return( 1 );
}
}
return( 0 );
}
//--------------------------------------------------------------------------------------------------
#endif*/

2335
src/crypt/uECC.c Normal file

File diff suppressed because it is too large Load Diff

171
src/crypt/uECC.h Normal file
View File

@ -0,0 +1,171 @@
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
#ifndef _MICRO_ECC_H_
#define _MICRO_ECC_H_
#include <stdint.h>
/* Platform selection options.
If uECC_PLATFORM is not defined, the code will try to guess it based on compiler macros.
Possible values for uECC_PLATFORM are defined below: */
#define uECC_arch_other 0
#define uECC_x86 1
#define uECC_x86_64 2
#define uECC_arm 3
#define uECC_arm_thumb 4
#define uECC_avr 5
/* If desired, you can define uECC_WORD_SIZE as appropriate for your platform (1, 4, or 8 bytes).
If uECC_WORD_SIZE is not explicitly defined then it will be automatically set based on your platform. */
/* Inline assembly options.
uECC_asm_none - Use standard C99 only.
uECC_asm_small - Use GCC inline assembly for the target platform (if available), optimized for minimum size.
uECC_asm_fast - Use GCC inline assembly optimized for maximum speed. */
#define uECC_asm_none 0
#define uECC_asm_small 1
#define uECC_asm_fast 2
#ifndef uECC_ASM
#define uECC_ASM uECC_asm_fast
#endif
/* Curve selection options. */
#define uECC_secp160r1 1
#define uECC_secp192r1 2
#define uECC_secp256r1 3
#define uECC_secp256k1 4
#ifndef uECC_CURVE
#define uECC_CURVE uECC_secp160r1
#endif
/* uECC_SQUARE_FUNC - If enabled (defined as nonzero), this will cause a specific function to be used for (scalar) squaring
instead of the generic multiplication function. This will make things faster by about 8% but increases the code size. */
#define uECC_SQUARE_FUNC 1
#define uECC_CONCAT1(a, b) a##b
#define uECC_CONCAT(a, b) uECC_CONCAT1(a, b)
#define uECC_size_1 20 /* secp160r1 */
#define uECC_size_2 24 /* secp192r1 */
#define uECC_size_3 32 /* secp256r1 */
#define uECC_size_4 32 /* secp256k1 */
#define uECC_BYTES uECC_CONCAT(uECC_size_, uECC_CURVE)
#ifdef __cplusplus
extern "C"
{
#endif
/* uECC_RNG_Function type
The RNG function should fill p_size random bytes into p_dest. It should return 1 if
p_dest was filled with random data, or 0 if the random data could not be generated.
The filled-in values should be either truly random, or from a cryptographically-secure PRNG.
A correctly functioning RNG function must be set (using uECC_set_rng()) before calling
uECC_make_key() or uECC_sign().
A correct RNG function is set by default when building for Windows, Linux, or OS X.
If you are building on another POSIX-compliant system that supports /dev/random or /dev/urandom,
you can define uECC_POSIX to use the predefined RNG. For embedded platforms there is no predefined
RNG function; you must provide your own.
*/
typedef int (*uECC_RNG_Function)(uint8_t *p_dest, unsigned p_size);
/* uECC_set_rng() function.
Set the function that will be used to generate random bytes. The RNG function should
return 1 if the random data was generated, or 0 if the random data could not be generated.
On platforms where there is no predefined RNG function (eg embedded platforms), this must
be called before uECC_make_key() or uECC_sign() are used.
Inputs:
p_rng - The function that will be used to generate random bytes.
*/
void uECC_set_rng(uECC_RNG_Function p_rng);
/* uECC_make_key() function.
Create a public/private key pair.
Outputs:
p_publicKey - Will be filled in with the public key.
p_privateKey - Will be filled in with the private key.
Returns 1 if the key pair was generated successfully, 0 if an error occurred.
*/
int uECC_make_key(uint8_t p_publicKey[uECC_BYTES*2], uint8_t p_privateKey[uECC_BYTES]);
/* uECC_shared_secret() function.
Compute a shared secret given your secret key and someone else's public key.
Note: It is recommended that you hash the result of uECC_shared_secret() before using it for symmetric encryption or HMAC.
Inputs:
p_publicKey - The public key of the remote party.
p_privateKey - Your private key.
Outputs:
p_secret - Will be filled in with the shared secret value.
Returns 1 if the shared secret was generated successfully, 0 if an error occurred.
*/
int uECC_shared_secret(const uint8_t p_publicKey[uECC_BYTES*2], const uint8_t p_privateKey[uECC_BYTES], uint8_t p_secret[uECC_BYTES]);
/* uECC_compress() function.
Compress a public key.
Inputs:
p_publicKey - The public key to compress.
Outputs:
p_compressed - Will be filled in with the compressed public key.
*/
void uECC_compress(const uint8_t p_publicKey[uECC_BYTES*2], uint8_t p_compressed[uECC_BYTES+1]);
/* uECC_decompress() function.
Decompress a compressed public key.
Inputs:
p_compressed - The compressed public key.
Outputs:
p_publicKey - Will be filled in with the decompressed public key.
*/
void uECC_decompress(const uint8_t p_compressed[uECC_BYTES+1], uint8_t p_publicKey[uECC_BYTES*2]);
/* uECC_sign() function.
Generate an ECDSA signature for a given hash value.
Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and pass it in to
this function along with your private key.
Inputs:
p_privateKey - Your private key.
p_hash - The message hash to sign.
Outputs:
p_signature - Will be filled in with the signature value.
Returns 1 if the signature generated successfully, 0 if an error occurred.
*/
int uECC_sign(const uint8_t p_privateKey[uECC_BYTES], const uint8_t p_hash[uECC_BYTES], uint8_t p_signature[uECC_BYTES*2]);
/* uECC_verify() function.
Verify an ECDSA signature.
Usage: Compute the hash of the signed data using the same hash as the signer and
pass it to this function along with the signer's public key and the signature values (r and s).
Inputs:
p_publicKey - The signer's public key
p_hash - The hash of the signed data.
p_signature - The signature value.
Returns 1 if the signature is valid, 0 if it is invalid.
*/
int uECC_verify(const uint8_t p_publicKey[uECC_BYTES*2], const uint8_t p_hash[uECC_BYTES], const uint8_t p_signature[uECC_BYTES*2]);
#ifdef __cplusplus
} /* end of extern "C" */
#endif
#endif /* _MICRO_ECC_H_ */