// // Fresnel // // http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html // https://github.com/wdas/brdf/tree/master/src/brdfs // https://google.github.io/filament/Filament.md.html // vec3 F_None(vec3 f0, vec3 f90, float VdotH) { return f0; } // The following equation models the Fresnel reflectance term of the spec equation (aka F()) // Implementation of fresnel from [4], Equation 15 vec3 F_Schlick(vec3 f0, vec3 f90, float VdotH) { return f0 + (f90 - f0) * pow(clamp(1.0 - VdotH, 0.0, 1.0), 5.0); } vec3 F_CookTorrance(vec3 f0, vec3 f90, float VdotH) { vec3 f0_sqrt = sqrt(f0); vec3 ior = (1.0 + f0_sqrt) / (1.0 - f0_sqrt); vec3 c = vec3(VdotH); vec3 g = sqrt(sq(ior) + c*c - 1.0); return 0.5 * pow(g-c, vec3(2.0)) / pow(g+c, vec3(2.0)) * (1.0 + pow(c*(g+c) - 1.0, vec3(2.0)) / pow(c*(g-c) + 1.0, vec3(2.0))); } // Smith Joint GGX // Note: Vis = G / (4 * NdotL * NdotV) // see Eric Heitz. 2014. Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs. Journal of Computer Graphics Techniques, 3 // see Real-Time Rendering. Page 331 to 336. // see https://google.github.io/filament/Filament.md.html#materialsystem/specularbrdf/geometricshadowing(specularg) float V_GGX(float NdotL, float NdotV, float alphaRoughness) { float alphaRoughnessSq = alphaRoughness * alphaRoughness; float GGXV = NdotL * sqrt(NdotV * NdotV * (1.0 - alphaRoughnessSq) + alphaRoughnessSq); float GGXL = NdotV * sqrt(NdotL * NdotL * (1.0 - alphaRoughnessSq) + alphaRoughnessSq); float GGX = GGXV + GGXL; if (GGX > 0.0) { return 0.5 / GGX; } return 0.0; } // Anisotropic GGX visibility function, with height correlation. // T: Tanget, B: Bi-tanget float V_GGX_anisotropic(float NdotL, float NdotV, float BdotV, float TdotV, float TdotL, float BdotL, float anisotropy, float at, float ab) { float GGXV = NdotL * length(vec3(at * TdotV, ab * BdotV, NdotV)); float GGXL = NdotV * length(vec3(at * TdotL, ab * BdotL, NdotL)); float v = 0.5 / (GGXV + GGXL); return clamp(v, 0.0, 1.0); } // https://github.com/google/filament/blob/master/shaders/src/brdf.fs#L136 // https://github.com/google/filament/blob/master/libs/ibl/src/CubemapIBL.cpp#L179 // Note: Google call it V_Ashikhmin and V_Neubelt float V_Ashikhmin(float NdotL, float NdotV) { return clamp(1.0 / (4.0 * (NdotL + NdotV - NdotL * NdotV)),0.0,1.0); } // https://github.com/google/filament/blob/master/shaders/src/brdf.fs#L131 float V_Kelemen(float LdotH) { // Kelemen 2001, "A Microfacet Based Coupled Specular-Matte BRDF Model with Importance Sampling" return 0.25 / (LdotH * LdotH); } // The following equation(s) model the distribution of microfacet normals across the area being drawn (aka D()) // Implementation from "Average Irregularity Representation of a Roughened Surface for Ray Reflection" by T. S. Trowbridge, and K. P. Reitz // Follows the distribution function recommended in the SIGGRAPH 2013 course notes from EPIC Games [1], Equation 3. float D_GGX(float NdotH, float alphaRoughness) { float alphaRoughnessSq = alphaRoughness * alphaRoughness; float f = (NdotH * NdotH) * (alphaRoughnessSq - 1.0) + 1.0; return alphaRoughnessSq / (M_PI * f * f); } // Anisotropic GGX NDF with a single anisotropy parameter controlling the normal orientation. // See https://google.github.io/filament/Filament.html#materialsystem/anisotropicmodel // T: Tanget, B: Bi-tanget float D_GGX_anisotropic(float NdotH, float TdotH, float BdotH, float anisotropy, float at, float ab) { float a2 = at * ab; vec3 f = vec3(ab * TdotH, at * BdotH, a2 * NdotH); float w2 = a2 / dot(f, f); return a2 * w2 * w2 / M_PI; } float D_Ashikhmin(float NdotH, float alphaRoughness) { // Ashikhmin 2007, "Distribution-based BRDFs" float a2 = alphaRoughness * alphaRoughness; float cos2h = NdotH * NdotH; float sin2h = 1.0 - cos2h; float sin4h = sin2h * sin2h; float cot2 = -cos2h / (a2 * sin2h); return 1.0 / (M_PI * (4.0 * a2 + 1.0) * sin4h) * (4.0 * exp(cot2) + sin4h); } //Sheen implementation------------------------------------------------------------------------------------- // See https://github.com/sebavan/glTF/tree/KHR_materials_sheen/extensions/2.0/Khronos/KHR_materials_sheen // Estevez and Kulla http://www.aconty.com/pdf/s2017_pbs_imageworks_sheen.pdf float D_Charlie(float sheenRoughness, float NdotH) { sheenRoughness = max(sheenRoughness, 0.000001); //clamp (0,1] float alphaG = sheenRoughness * sheenRoughness; float invR = 1.0 / alphaG; float cos2h = NdotH * NdotH; float sin2h = 1.0 - cos2h; return (2.0 + invR) * pow(sin2h, invR * 0.5) / (2.0 * M_PI); } //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#acknowledgments AppendixB vec3 BRDF_lambertian(vec3 f0, vec3 f90, vec3 diffuseColor, float VdotH) { // see https://seblagarde.wordpress.com/2012/01/08/pi-or-not-to-pi-in-game-lighting-equation/ return (1.0 - F_Schlick(f0, f90, VdotH)) * (diffuseColor / M_PI); } // https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#acknowledgments AppendixB vec3 BRDF_specularGGX(vec3 f0, vec3 f90, float alphaRoughness, float VdotH, float NdotL, float NdotV, float NdotH) { vec3 F = F_Schlick(f0, f90, VdotH); float Vis = V_GGX(NdotL, NdotV, alphaRoughness); float D = D_GGX(NdotH, alphaRoughness); return F * Vis * D; } vec3 BRDF_specularAnisotropicGGX(vec3 f0, vec3 f90, float alphaRoughness, float VdotH, float NdotL, float NdotV, float NdotH, float BdotV, float TdotV, float TdotL, float BdotL, float TdotH, float BdotH, float anisotropy) { // Roughness along tangent and bitangent. // Christopher Kulla and Alejandro Conty. 2017. Revisiting Physically Based Shading at Imageworks float at = max(alphaRoughness * (1.0 + anisotropy), 0.00001); float ab = max(alphaRoughness * (1.0 - anisotropy), 0.00001); vec3 F = F_Schlick(f0, f90, VdotH); float V = V_GGX_anisotropic(NdotL, NdotV, BdotV, TdotV, TdotL, BdotL, anisotropy, at, ab); float D = D_GGX_anisotropic(NdotH, TdotH, BdotH, anisotropy, at, ab); return F * V * D; } // f_sheen vec3 BRDF_specularSheen(vec3 sheenColor, float sheenIntensity, float sheenRoughness, float NdotL, float NdotV, float NdotH) { float sheenDistribution = D_Charlie(sheenRoughness, NdotH); float sheenVisibility = V_Ashikhmin(NdotL, NdotV); return sheenColor * sheenIntensity * sheenDistribution * sheenVisibility; }