TexConv/CMP_Core/shaders/BC7_Encode_kernel.cpp

3676 lines
132 KiB
C++

//===================================================================================
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
//==================================================================================
// Ref: GPUOpen-Tools/Compressonator
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Copyright (c) 2016, Intel Corporation
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of
// the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
// TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//--------------------------------------
// Common BC7 Header
//--------------------------------------
#include "bc7_encode_kernel.h"
//#define USE_ICMP
#ifndef ASPM_OPENCL
//#define USE_NEW_SINGLE_HEADER_INTERFACES
#endif
#ifdef USE_NEW_SINGLE_HEADER_INTERFACES
#define USE_CMPMSC
//#define USE_MSC
//#define USE_INT
//#define USE_RGBCX_RDO
//#define USE_VOLT
//#define USE_ICBC
#endif
#include "bc7_common_encoder.h"
#ifndef ASPM
//---------------------------------------------
// Predefinitions for GPU and CPU compiled code
//---------------------------------------------
INLINE CGU_INT a_compare(const void* arg1, const void* arg2)
{
if (((CMP_di*)arg1)->image - ((CMP_di*)arg2)->image > 0)
return 1;
if (((CMP_di*)arg1)->image - ((CMP_di*)arg2)->image < 0)
return -1;
return 0;
};
#endif
#ifndef ASPM_GPU
CMP_GLOBAL BC7_EncodeRamps BC7EncodeRamps
#ifndef ASPM
= {0}
#endif
;
//---------------------------------------------
// CPU: Computes max of two float values
//---------------------------------------------
float bc7_maxf(float l1, float r1)
{
return (l1 > r1 ? l1 : r1);
}
//---------------------------------------------
// CPU: Computes max of two float values
//---------------------------------------------
float bc7_minf(float l1, float r1)
{
return (l1 < r1 ? l1 : r1);
}
#endif
INLINE CGV_INT shift_right_epocode(CGV_INT v, CGU_INT bits)
{
return v >> bits; // (perf warning expected)
}
INLINE CGV_INT expand_epocode(CGV_INT v, CGU_INT bits)
{
CGV_INT vv = v << (8 - bits);
return vv + shift_right_epocode(vv, bits);
}
// valid bit range is 0..8
CGU_INT expandbits(CGU_INT bits, CGU_INT v)
{
return (v << (8 - bits) | v >> (2 * bits - 8));
}
CMP_EXPORT CGU_INT bc7_isa()
{
#ifndef ASPM_GPU
#if defined(ISPC_TARGET_SSE2)
ASPM_PRINT(("SSE2"));
return 0;
#elif defined(ISPC_TARGET_SSE4)
ASPM_PRINT(("SSE4"));
return 1;
#elif defined(ISPC_TARGET_AVX)
ASPM_PRINT(("AVX"));
return 2;
#elif defined(ISPC_TARGET_AVX2)
ASPM_PRINT(("AVX2"));
return 3;
#else
ASPM_PRINT(("CPU"));
#endif
#endif
return -1;
}
CMP_EXPORT void init_BC7ramps()
{
#ifdef ASPM_GPU
#else
CMP_STATIC CGU_BOOL g_rampsInitialized = FALSE;
if (g_rampsInitialized == TRUE)
return;
g_rampsInitialized = TRUE;
BC7EncodeRamps.ramp_init = TRUE;
//bc7_isa(); ASPM_PRINT((" INIT Ramps\n"));
CGU_INT bits;
CGU_INT p1;
CGU_INT p2;
CGU_INT clogBC7;
CGU_INT index;
CGU_INT j;
CGU_INT o1;
CGU_INT o2;
CGU_INT maxi = 0;
for (bits = BIT_BASE; bits < BIT_RANGE; bits++)
{
for (p1 = 0; p1 < (1 << bits); p1++)
{
BC7EncodeRamps.ep_d[BTT(bits)][p1] = expandbits(bits, p1);
} //p1
} //bits<BIT_RANGE
for (clogBC7 = LOG_CL_BASE; clogBC7 < LOG_CL_RANGE; clogBC7++)
{
for (bits = BIT_BASE; bits < BIT_RANGE; bits++)
{
#ifdef USE_BC7_RAMP
for (p1 = 0; p1 < (1 << bits); p1++)
{
for (p2 = 0; p2 < (1 << bits); p2++)
{
for (index = 0; index < (1 << clogBC7); index++)
{
if (index > maxi)
maxi = index;
BC7EncodeRamps.ramp[(CLT(clogBC7) * 4 * 256 * 256 * 16) + (BTT(bits) * 256 * 256 * 16) + (p1 * 256 * 16) + (p2 * 16) + index] =
//cmp_floor((CGV_FLOAT)BC7EncodeRamps.ep_d[BTT(bits)][p1] + rampWeights[clogBC7][index] * (CGV_FLOAT)((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1]))+ 0.5F);
cmp_floor(BC7EncodeRamps.ep_d[BTT(bits)][p1] +
rampWeights[clogBC7][index] * ((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1])) + 0.5F);
} //index<(1 << clogBC7)
} //p2<(1 << bits)
} //p1<(1 << bits)
#endif
#ifdef USE_BC7_SP_ERR_IDX
for (j = 0; j < 256; j++)
{
for (o1 = 0; o1 < 2; o1++)
{
for (o2 = 0; o2 < 2; o2++)
{
for (index = 0; index < 16; index++)
{
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
(o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] = 0;
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
(o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1] = 255;
BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (j * 2 * 2 * 16) + (o1 * 2 * 16) +
(o2 * 16) + index] = 255;
} // i<16
} //o2<2;
} //o1<2
} //j<256
for (p1 = 0; p1 < (1 << bits); p1++)
{
for (p2 = 0; p2 < (1 << bits); p2++)
{
for (index = 0; index < (1 << clogBC7); index++)
{
#ifdef USE_BC7_RAMP
CGV_INT floatf =
(CGV_INT)
BC7EncodeRamps.ramp[(CLT(clogBC7) * 4 * 256 * 256 * 16) + (BTT(bits) * 256 * 256 * 16) + (p1 * 256 * 16) + (p2 * 16) + index];
#else
CGV_INT floatf =
cmp_floor((CGV_FLOAT)BC7EncodeRamps.ep_d[BTT(bits)][p1] +
rampWeights[clogBC7][index] * (CGV_FLOAT)((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1])) + 0.5F);
#endif
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (floatf * 2 * 2 * 16 * 2) +
((p1 & 0x1) * 2 * 16 * 2) + ((p2 & 0x1) * 16 * 2) + (index * 2) + 0] = p1;
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (floatf * 2 * 2 * 16 * 2) +
((p1 & 0x1) * 2 * 16 * 2) + ((p2 & 0x1) * 16 * 2) + (index * 2) + 1] = p2;
BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (floatf * 2 * 2 * 16) +
((p1 & 0x1) * 2 * 16) + (p2 & 0x1 * 16) + index] = 0;
} //i<(1 << clogBC7)
} //p2
} //p1<(1 << bits)
for (j = 0; j < 256; j++)
{
for (o1 = 0; o1 < 2; o1++)
{
for (o2 = 0; o2 < 2; o2++)
{
for (index = 0; index < (1 << clogBC7); index++)
{
if ( // check for unitialized sp_idx
(BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
(o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] == 0) &&
(BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) + (j * 2 * 2 * 16 * 2) +
(o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1] == 255))
{
CGU_INT k;
CGU_INT tf;
CGU_INT tc;
for (k = 1; k < 256; k++)
{
tf = j - k;
tc = j + k;
if ((tf >= 0 && BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) +
(tf * 2 * 2 * 16) + (o1 * 2 * 16) + (o2 * 16) + index] == 0))
{
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
(j * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] =
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
(tf * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0];
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
(j * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1] =
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
(tf * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 1];
break;
}
else if ((tc < 256 && BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) +
(tc * 2 * 2 * 16) + (o1 * 2 * 16) + (o2 * 16) + index] == 0))
{
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
(j * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0] =
BC7EncodeRamps.sp_idx[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits) * 256 * 2 * 2 * 16 * 2) +
(tc * 2 * 2 * 16 * 2) + (o1 * 2 * 16 * 2) + (o2 * 16 * 2) + (index * 2) + 0];
break;
}
}
//BC7EncodeRamps.sp_err[(CLT(clogBC7)*4*256*2*2*16)+(BTT(bits)*256*2*2*16)+(j*2*2*16)+(o1*2*16)+(o2*16)+index] = (CGV_FLOAT) k;
BC7EncodeRamps.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (j * 2 * 2 * 16) +
(o1 * 2 * 16) + (o2 * 16) + index] = (CGU_UINT8)k;
} //sp_idx < 0
} //i<(1 << clogBC7)
} //o2
} //o1
} //j
#endif
} //bits<BIT_RANGE
} //clogBC7<LOG_CL_RANGE
#endif
}
//----------------------------------------------------------
//====== Common BC7 ASPM Code used for SPMD (CPU/GPU) ======
//----------------------------------------------------------
#define SOURCE_BLOCK_SIZE 16 // Size of a source block in pixels (each pixel has RGBA:8888 channels)
#define COMPRESSED_BLOCK_SIZE 16 // Size of a compressed block in bytes
#define MAX_CHANNELS 4
#define MAX_SUBSETS 3 // Maximum number of possible subsets
#define MAX_SUBSET_SIZE 16 // Largest possible size for an individual subset
#ifndef ASPM_GPU
extern "C" CGU_INT timerStart(CGU_INT id);
extern "C" CGU_INT timerEnd(CGU_INT id);
#define TIMERSTART(x) timerStart(x)
#define TIMEREND(x) timerEnd(x)
#else
#define TIMERSTART(x)
#define TIMEREND(x)
#endif
#ifdef ASPM_GPU
#define GATHER_UINT8(x, y) x[y]
#else
#define GATHER_UINT8(x, y) gather_uint8(x, y)
#endif
// INLINE CGV_UINT8 gather_uint8 (CMP_CONSTANT CGU_UINT8 * __constant CMP_UNIFORM ptr, CGV_INT idx)
// {
// return ptr[idx]; // (perf warning expected)
// }
//
// INLINE CGV_UINT8 gather_cmpout(CMP_CONSTANT CGV_UINT8 * __constant CMP_UNIFORM ptr, CGU_INT idx)
// {
// return ptr[idx]; // (perf warning expected)
// }
//
//INLINE CGV_UINT8 gather_index(CMP_CONSTANT varying CGV_UINT8* __constant CMP_UNIFORM ptr, CGV_INT idx)
//{
// return ptr[idx]; // (perf warning expected)
//}
//
//INLINE void scatter_index(CGV_UINT8* ptr, CGV_INT idx, CGV_UINT8 value)
//{
// ptr[idx] = value; // (perf warning expected)
//}
//
#ifdef USE_VARYING
INLINE CGV_INT gather_epocode(CMP_CONSTANT CGV_INT* ptr, CGV_INT idx)
{
return ptr[idx]; // (perf warning expected)
}
#endif
INLINE CGV_UINT32 gather_partid(CMP_CONSTANT CGV_UINT32* CMP_UNIFORM ptr, CGV_INT idx)
{
return ptr[idx]; // (perf warning expected)
}
//INLINE CGV_UINT8 gather_vuint8(CMP_CONSTANT varying CGV_UINT8* __constant CMP_UNIFORM ptr, CGV_INT idx)
//{
// return ptr[idx]; // (perf warning expected)
//}
INLINE void cmp_swap_epo(CGV_INT u[], CGV_INT v[], CGV_INT n)
{
for (CGU_INT i = 0; i < n; i++)
{
CGV_INT t = u[i];
u[i] = v[i];
v[i] = t;
}
}
INLINE void cmp_swap_index(CGV_UINT8 u[], CGV_UINT8 v[], CGU_INT n)
{
for (CGU_INT i = 0; i < n; i++)
{
CGV_UINT8 t = u[i];
u[i] = v[i];
v[i] = t;
}
}
void cmp_memsetBC7(CGV_UINT8 ptr[], CGV_UINT8 value, CGU_UINT32 size)
{
for (CGV_UINT32 i = 0; i < size; i++)
{
ptr[i] = value;
}
}
void cmp_memcpy(CMP_GLOBAL CGU_UINT8 dst[], CGU_UINT8 src[], CGU_UINT32 size)
{
#ifdef ASPM_GPU
for (CGV_INT i = 0; i < size; i++)
{
dst[i] = src[i];
}
#else
memcpy(dst, src, size);
#endif
}
INLINE CGV_FLOAT sq_image(CGV_FLOAT v)
{
return v * v;
}
INLINE CGV_INT clampEPO(CGV_INT v, CGV_INT a, CGV_INT b)
{
if (v < a)
return a;
else if (v > b)
return b;
return v;
}
INLINE CGV_UINT8 clampIndex(CGV_UINT8 v, CGV_UINT8 a, CGV_UINT8 b)
{
if (v < a)
return a;
else if (v > b)
return b;
return v;
}
INLINE CGV_UINT32 shift_right_uint32(CGV_UINT32 v, CGU_INT bits)
{
return v >> bits; // (perf warning expected)
}
INLINE CGV_UINT8 shift_right_uint8(CGV_UINT8 v, CGU_UINT8 bits)
{
return v >> bits; // (perf warning expected)
}
INLINE CGV_UINT8 shift_right_uint8V(CGV_UINT8 v, CGV_UINT8 bits)
{
return v >> bits; // (perf warning expected)
}
// valid bit range is 0..8
INLINE CGV_INT expandEPObits(CGV_INT v, CMP_UNIFORM CGV_INT bits)
{
CGV_INT vv = v << (8 - bits);
return vv + shift_right_uint32(vv, bits);
}
CGV_FLOAT err_absf(CGV_FLOAT a)
{
return a > 0.0F ? a : -a;
}
CGV_FLOAT img_absf(CGV_FLOAT a)
{
return a > 0.0F ? a : -a;
}
CGU_UINT8 min8(CGU_UINT8 a, CGU_UINT8 b)
{
return a < b ? a : b;
}
CGU_UINT8 max8(CGU_UINT8 a, CGU_UINT8 b)
{
return a > b ? a : b;
}
void pack_index(CGV_UINT32 packed_index[2], CGV_UINT8 src_index[MAX_SUBSET_SIZE])
{
// Converts from unpacked index to packed index
packed_index[0] = 0x0000;
packed_index[1] = 0x0000;
CGV_UINT8 shift = 0; // was CGV_UINT8
for (CGU_INT k = 0; k < 16; k++)
{
packed_index[k / 8] |= (CGV_UINT32)(src_index[k] & 0x0F) << shift;
shift += 4;
}
}
void unpack_index(CGV_UINT8 unpacked_index[MAX_SUBSET_SIZE], CGV_UINT32 src_packed[2])
{
// Converts from packed index to unpacked index
CGV_UINT8 shift = 0; // was CGV_UINT8
for (CGV_UINT8 k = 0; k < 16; k++)
{
unpacked_index[k] = (CGV_UINT8)(src_packed[k / 8] >> shift) & 0xF;
if (k == 7)
shift = 0;
else
shift += 4;
}
}
//====================================== CMP MATH UTILS ============================================
CGV_FLOAT err_Total(CGV_FLOAT image_src1[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_FLOAT image_src2[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries, // < 16
CGU_UINT8 channels3or4)
{ // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
CGV_FLOAT err_t = 0.0F;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
for (CGV_INT k = 0; k < numEntries; k++)
{
err_t = err_t + sq_image(image_src1[k + ch * SOURCE_BLOCK_SIZE] - image_src2[k + ch * SOURCE_BLOCK_SIZE]);
}
return err_t;
};
void GetImageCentered(CGV_FLOAT image_centered_out[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_FLOAT mean_out[MAX_CHANNELS],
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries, // < 16
CGU_UINT8 channels3or4)
{ // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
mean_out[ch] = 0.0F;
if (numEntries > 0)
{
for (CGV_INT k = 0; k < numEntries; k++)
{
mean_out[ch] = mean_out[ch] + image_src[k + (ch * SOURCE_BLOCK_SIZE)];
}
mean_out[ch] /= numEntries;
for (CGV_INT k = 0; k < numEntries; k++)
image_centered_out[k + (ch * SOURCE_BLOCK_SIZE)] = image_src[k + (ch * SOURCE_BLOCK_SIZE)] - mean_out[ch];
}
}
}
void GetCovarianceVector(CGV_FLOAT covariance_out[MAX_CHANNELS * MAX_CHANNELS], // OUT: Covariance vector
CGV_FLOAT image_centered[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries, // < 16
CGU_UINT8 channels3or4)
{ // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
for (CGU_UINT8 ch2 = 0; ch2 <= ch1; ch2++)
{
covariance_out[ch1 + ch2 * 4] = 0;
for (CGV_INT k = 0; k < numEntries; k++)
covariance_out[ch1 + ch2 * 4] += image_centered[k + (ch1 * SOURCE_BLOCK_SIZE)] * image_centered[k + (ch2 * SOURCE_BLOCK_SIZE)];
}
for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
for (CGU_UINT8 ch2 = ch1 + 1; ch2 < channels3or4; ch2++)
covariance_out[ch1 + ch2 * 4] = covariance_out[ch2 + ch1 * 4];
}
void GetProjecedImage(CGV_FLOAT projection_out[SOURCE_BLOCK_SIZE], //output projected data
CGV_FLOAT image_centered[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries, // < 16
CGV_FLOAT EigenVector[MAX_CHANNELS],
CGU_UINT8 channels3or4)
{ // 3 = RGB or 4 = RGBA
projection_out[0] = 0.0F;
// EigenVector must be normalized
for (CGV_INT k = 0; k < numEntries; k++)
{
projection_out[k] = 0.0F;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
projection_out[k] = projection_out[k] + (image_centered[k + (ch * SOURCE_BLOCK_SIZE)] * EigenVector[ch]);
}
}
}
INLINE CGV_UINT8 get_partition_subset(CGV_INT part_id, CGU_INT maxSubsets, CGV_INT index)
{
if (maxSubsets == 2)
{
CGV_UINT32 mask_packed = subset_mask_table[part_id];
return ((mask_packed & (0x01 << index)) ? 1 : 0); // This can be moved to caller, just return mask!!
}
// 3 region subsets
part_id += 64;
CGV_UINT32 mask0 = subset_mask_table[part_id] & 0xFFFF;
CGV_UINT32 mask1 = subset_mask_table[part_id] >> 16;
CGV_UINT32 mask = 0x01 << index;
return ((mask1 & mask) ? 2 : 0 + (mask0 & mask) ? 1 : 0); // This can be moved to caller, just return mask!!
}
void GetPartitionSubSet_mode01237(CGV_FLOAT subsets_out[MAX_SUBSETS][SOURCE_BLOCK_SIZE][MAX_CHANNELS], // OUT: Subset pattern mapped with image src colors
CGV_INT entryCount_out[MAX_SUBSETS], // OUT: Number of entries per subset
CGV_UINT8 partition, // Partition Shape 0..63
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS], // Image colors
CGU_INT blockMode, // [0,1,2,3 or 7]
CGU_UINT8 channels3or4)
{ // 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
CGU_UINT8 maxSubsets = 2;
if (blockMode == 0 || blockMode == 2)
maxSubsets = 3;
entryCount_out[0] = 0;
entryCount_out[1] = 0;
entryCount_out[2] = 0;
for (CGV_INT i = 0; i < MAX_SUBSET_SIZE; i++)
{
CGV_UINT8 subset = get_partition_subset(partition, maxSubsets, i);
for (CGU_INT ch = 0; ch < 3; ch++)
subsets_out[subset][entryCount_out[subset]][ch] = image_src[i + (ch * SOURCE_BLOCK_SIZE)];
//subsets_out[subset*64+(entryCount_out[subset]*MAX_CHANNELS+ch)] = image_src[i+(ch*SOURCE_BLOCK_SIZE)];
// if we have only 3 channels then set the alpha subset to 0
if (channels3or4 == 3)
subsets_out[subset][entryCount_out[subset]][3] = 0.0F;
else
subsets_out[subset][entryCount_out[subset]][3] = image_src[i + (COMP_ALPHA * SOURCE_BLOCK_SIZE)];
entryCount_out[subset]++;
}
}
INLINE void GetClusterMean(CGV_FLOAT cluster_mean_out[SOURCE_BLOCK_SIZE][MAX_CHANNELS],
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_UINT8 index_in[MAX_SUBSET_SIZE],
CGV_INT numEntries, // < 16
CGU_UINT8 channels3or4)
{ // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
// unused index values are underfined
CGV_UINT8 i_cnt[MAX_SUBSET_SIZE];
CGV_UINT8 i_comp[MAX_SUBSET_SIZE];
for (CGV_INT i = 0; i < numEntries; i++)
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
CGV_UINT8 idx = index_in[i] & 0x0F;
cluster_mean_out[idx][ch] = 0;
i_cnt[idx] = 0;
}
CGV_UINT8 ic = 0; // was CGV_INT
for (CGV_INT i = 0; i < numEntries; i++)
{
CGV_UINT8 idx = index_in[i] & 0x0F;
if (i_cnt[idx] == 0)
i_comp[ic++] = idx;
i_cnt[idx]++;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
cluster_mean_out[idx][ch] += image_src[i + (ch * SOURCE_BLOCK_SIZE)];
}
}
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
for (CGU_INT i = 0; i < ic; i++)
{
if (i_cnt[i_comp[i]] != 0)
{
CGV_UINT8 icmp = i_comp[i];
cluster_mean_out[icmp][ch] = (CGV_FLOAT)cmp_floor((cluster_mean_out[icmp][ch] / (CGV_FLOAT)i_cnt[icmp]) + 0.5F);
}
}
}
INLINE void GetImageMean(CGV_FLOAT image_mean_out[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries,
CGU_UINT8 channels)
{
for (CGU_UINT8 ch = 0; ch < channels; ch++)
image_mean_out[ch] = 0;
for (CGV_INT i = 0; i < numEntries; i++)
for (CGU_UINT8 ch = 0; ch < channels; ch++)
image_mean_out[ch] += image_src[i + ch * SOURCE_BLOCK_SIZE];
for (CGU_UINT8 ch = 0; ch < channels; ch++)
image_mean_out[ch] /= (CGV_FLOAT)numEntries; // Performance Warning: Conversion from unsigned int to float is slow. Use "int" if possible
}
// calculate an eigen vector corresponding to a biggest eigen value
// will work for non-zero non-negative matricies only
void GetEigenVector(CGV_FLOAT EigenVector_out[MAX_CHANNELS], // Normalized Eigen Vector output
CGV_FLOAT CovarianceVector[MAX_CHANNELS * MAX_CHANNELS], // Covariance Vector
CGU_UINT8 channels3or4)
{ // IN: 3 = RGB or 4 = RGBA
CGV_FLOAT vector_covIn[MAX_CHANNELS * MAX_CHANNELS];
CGV_FLOAT vector_covOut[MAX_CHANNELS * MAX_CHANNELS];
CGV_FLOAT vector_maxCovariance;
for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
for (CGU_UINT8 ch2 = 0; ch2 < channels3or4; ch2++)
{
vector_covIn[ch1 + ch2 * 4] = CovarianceVector[ch1 + ch2 * 4];
}
vector_maxCovariance = 0;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
if (vector_covIn[ch + ch * 4] > vector_maxCovariance)
vector_maxCovariance = vector_covIn[ch + ch * 4];
}
// Normalize Input Covariance Vector
for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
for (CGU_UINT8 ch2 = 0; ch2 < channels3or4; ch2++)
{
if (vector_maxCovariance > 0)
vector_covIn[ch1 + ch2 * 4] = vector_covIn[ch1 + ch2 * 4] / vector_maxCovariance;
}
for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
{
for (CGU_UINT8 ch2 = 0; ch2 < channels3or4; ch2++)
{
CGV_FLOAT vector_temp_cov = 0;
for (CGU_UINT8 ch3 = 0; ch3 < channels3or4; ch3++)
{
vector_temp_cov = vector_temp_cov + vector_covIn[ch1 + ch3 * 4] * vector_covIn[ch3 + ch2 * 4];
}
vector_covOut[ch1 + ch2 * 4] = vector_temp_cov;
}
}
vector_maxCovariance = 0;
CGV_INT maxCovariance_channel = 0;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
if (vector_covOut[ch + ch * 4] > vector_maxCovariance)
{
maxCovariance_channel = ch;
vector_maxCovariance = vector_covOut[ch + ch * 4];
}
}
CGV_FLOAT vector_t = 0;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
vector_t = vector_t + vector_covOut[maxCovariance_channel + ch * 4] * vector_covOut[maxCovariance_channel + ch * 4];
EigenVector_out[ch] = vector_covOut[maxCovariance_channel + ch * 4];
}
// Normalize the Eigen Vector
vector_t = sqrt(vector_t);
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
if (vector_t > 0)
EigenVector_out[ch] = EigenVector_out[ch] / vector_t;
}
}
CGV_UINT8 index_collapse(CGV_UINT8 index[MAX_SUBSET_SIZE], CGV_INT numEntries)
{
CGV_UINT8 minIndex = index[0];
CGV_UINT8 MaxIndex = index[0];
for (CGV_INT k = 1; k < numEntries; k++)
{
if (index[k] < minIndex)
minIndex = index[k];
if (index[k] > MaxIndex)
MaxIndex = index[k];
}
CGV_UINT8 D = 1;
for (CGV_UINT8 d = 2; d <= MaxIndex - minIndex; d++)
{
for (CGV_INT ent = 0; ent < numEntries; ent++)
{
if ((index[ent] - minIndex) % d != 0)
{
if (ent >= numEntries)
D = d;
break;
}
}
}
for (CGV_INT k = 0; k < numEntries; k++)
{
index[k] = (index[k] - minIndex) / D;
}
for (CGV_INT k = 1; k < numEntries; k++)
{
if (index[k] > MaxIndex)
MaxIndex = index[k];
}
return (MaxIndex);
}
void sortProjected_indexs(CGV_UINT8 index_ordered[MAX_SUBSET_SIZE],
CGV_FLOAT projection[SOURCE_BLOCK_SIZE],
CGV_INT numEntries // max 16
)
{
CMP_di what[SOURCE_BLOCK_SIZE];
for (CGV_UINT8 i = 0; i < numEntries; i++)
{
what[i].index = i;
what[i].image = projection[i];
}
CGV_UINT8 tmp_index;
CGV_FLOAT tmp_image;
for (CGV_INT i = 1; i < numEntries; i++)
{
for (CGV_INT j = i; j > 0; j--)
{
if (what[j - 1].image > what[j].image)
{
tmp_index = what[j].index;
tmp_image = what[j].image;
what[j].index = what[j - 1].index;
what[j].image = what[j - 1].image;
what[j - 1].index = tmp_index;
what[j - 1].image = tmp_image;
}
}
}
for (CGV_INT i = 0; i < numEntries; i++)
index_ordered[i] = what[i].index;
};
void sortPartitionProjection(CGV_FLOAT projection[MAX_PARTITION_ENTRIES],
CGV_UINT8 order[MAX_PARTITION_ENTRIES],
CGU_UINT8 numPartitions // max 64
)
{
CMP_du what[MAX_PARTITION_ENTRIES];
for (CGU_UINT8 Parti = 0; Parti < numPartitions; Parti++)
{
what[Parti].index = Parti;
what[Parti].image = projection[Parti];
}
CGV_UINT8 index;
CGV_FLOAT data;
for (CGU_UINT8 Parti = 1; Parti < numPartitions; Parti++)
{
for (CGU_UINT8 Partj = Parti; Partj > 0; Partj--)
{
if (what[Partj - 1].image > what[Partj].image)
{
index = what[Partj].index;
data = what[Partj].image;
what[Partj].index = what[Partj - 1].index;
what[Partj].image = what[Partj - 1].image;
what[Partj - 1].index = index;
what[Partj - 1].image = data;
}
}
}
for (CGU_UINT8 Parti = 0; Parti < numPartitions; Parti++)
order[Parti] = what[Parti].index;
};
void cmp_Write8Bit(CGV_UINT8 base[], CGU_INT* CMP_UNIFORM offset, CGU_INT bits, CGV_UINT8 bitVal)
{
base[*offset / 8] |= bitVal << (*offset % 8);
if (*offset % 8 + bits > 8)
{
base[*offset / 8 + 1] |= shift_right_uint8(bitVal, 8 - *offset % 8);
}
*offset += bits;
}
void cmp_Write8BitV(CGV_UINT8 base[], CGV_INT offset, CGU_INT bits, CGV_UINT8 bitVal)
{
base[offset / 8] |= bitVal << (offset % 8);
if (offset % 8 + bits > 8)
{
base[offset / 8 + 1] |= shift_right_uint8V(bitVal, 8 - offset % 8);
}
}
INLINE CGV_INT ep_find_floor(CGV_FLOAT v, CGU_UINT8 bits, CGV_UINT8 use_par, CGV_UINT8 odd)
{
CGV_INT i1 = 0;
CGV_INT i2 = 1 << (bits - use_par);
odd = use_par ? odd : 0;
while (i2 - i1 > 1)
{
CGV_INT j = (i1 + i2) / 2; // Warning in ASMP code
CGV_INT ep_d = expandEPObits((j << use_par) + odd, bits);
if (v >= ep_d)
i1 = j;
else
i2 = j;
}
return (i1 << use_par) + odd;
}
//==========================================================
// Not used for Modes 4&5
INLINE CGV_FLOAT GetRamp(CGU_INT clogBC7, // ramp bits Valid range 2..4
CGU_INT bits, // Component Valid range 5..8
CGV_INT p1, // 0..255
CGV_INT p2, // 0..255
CGV_UINT8 index)
{ // 0..15
#ifdef ASPM_GPU // GPU Code
CGV_FLOAT rampf = 0.0F;
CGV_INT e1 = expand_epocode(p1, bits);
CGV_INT e2 = expand_epocode(p2, bits);
CGV_FLOAT ramp = gather_epocode(rampI, clogBC7 * 16 + index) / 64.0F;
rampf = cmp_floor(e1 + ramp * (e2 - e1) + 0.5F); // returns 0..255 values
return rampf;
#else // CPU ASPM Code
#ifdef USE_BC7_RAMP
CGV_FLOAT rampf = BC7EncodeRamps.ramp[(CLT(clogBC7) * 4 * 256 * 256 * 16) + (BTT(bits) * 256 * 256 * 16) + (p1 * 256 * 16) + (p2 * 16) + index];
return rampf;
#else
return (CGV_FLOAT)cmp_floor((CGV_FLOAT)BC7EncodeRamps.ep_d[BTT(bits)][p1] +
rampWeights[clogBC7][index] * (CGV_FLOAT)((BC7EncodeRamps.ep_d[BTT(bits)][p2] - BC7EncodeRamps.ep_d[BTT(bits)][p1])) + 0.5F);
#endif
#endif
}
// Not used for Modes 4&5
INLINE CGV_FLOAT get_sperr(CGU_INT clogBC7, // ramp bits Valid range 2..4
CGU_INT bits, // Component Valid range 5..8
CGV_INT p1, // 0..255
CGU_INT t1,
CGU_INT t2,
CGV_UINT8 index)
{
#ifdef ASPM_GPU
return 0.0F;
#else
#ifdef USE_BC7_SP_ERR_IDX
if (BC7EncodeRamps.ramp_init)
return BC7EncodeRamps
.sp_err[(CLT(clogBC7) * 4 * 256 * 2 * 2 * 16) + (BTT(bits) * 256 * 2 * 2 * 16) + (p1 * 2 * 2 * 16) + (t1 * 2 * 16) + (t2 * 16) + index];
else
return 0.0F;
#else
return 0.0F;
#endif
#endif
}
INLINE void get_fixuptable(CGV_INT fixup[3], CGV_INT part_id)
{
CGV_INT skip_packed = FIXUPINDEX[part_id]; // gather_int2(FIXUPINDEX, part_id);
fixup[0] = 0;
fixup[1] = skip_packed >> 4;
fixup[2] = skip_packed & 15;
}
//===================================== COMPRESS CODE =============================================
INLINE void SetDefaultIndex(CGV_UINT8 index_io[MAX_SUBSET_SIZE])
{
// Use this a final call
for (CGU_INT i = 0; i < MAX_SUBSET_SIZE; i++)
index_io[i] = 0;
}
INLINE void SetDefaultEPOCode(CGV_INT epo_code_io[8], CGV_INT R, CGV_INT G, CGV_INT B, CGV_INT A)
{
epo_code_io[0] = R;
epo_code_io[1] = G;
epo_code_io[2] = B;
epo_code_io[3] = A;
epo_code_io[4] = R;
epo_code_io[5] = G;
epo_code_io[6] = B;
epo_code_io[7] = A;
}
void GetProjectedIndex(CGV_UINT8 projected_index_out[MAX_SUBSET_SIZE], //output: index, uncentered, in the range 0..clusters-1
CGV_FLOAT image_projected[SOURCE_BLOCK_SIZE], // image_block points, might be uncentered
CGV_INT clusters, // clusters: number of points in the ramp (max 16)
CGV_INT numEntries)
{ // n - number of points in v_ max 15
CMP_di what[SOURCE_BLOCK_SIZE];
CGV_FLOAT image_v[SOURCE_BLOCK_SIZE];
CGV_FLOAT image_z[SOURCE_BLOCK_SIZE];
CGV_FLOAT image_l;
CGV_FLOAT image_mm;
CGV_FLOAT image_r = 0.0F;
CGV_FLOAT image_dm = 0.0F;
CGV_FLOAT image_min;
CGV_FLOAT image_max;
CGV_FLOAT image_s;
SetDefaultIndex(projected_index_out);
image_min = image_projected[0];
image_max = image_projected[0];
for (CGV_INT i = 1; i < numEntries; i++)
{
if (image_min < image_projected[i])
image_min = image_projected[i];
if (image_max > image_projected[i])
image_max = image_projected[i];
}
CGV_FLOAT img_diff = image_max - image_min;
if (img_diff == 0.0f)
return;
if (cmp_isnan(img_diff))
return;
image_s = (clusters - 1) / img_diff;
for (CGV_UINT8 i = 0; i < numEntries; i++)
{
image_v[i] = image_projected[i] * image_s;
image_z[i] = cmp_floor(image_v[i] + 0.5F - image_min * image_s);
projected_index_out[i] = (CGV_UINT8)image_z[i];
what[i].image = image_v[i] - image_z[i] - image_min * image_s;
what[i].index = i;
image_dm += what[i].image;
image_r += what[i].image * what[i].image;
}
if (numEntries * image_r - image_dm * image_dm >= (CGV_FLOAT)(numEntries - 1) / 8)
{
image_dm /= numEntries;
for (CGV_INT i = 0; i < numEntries; i++)
what[i].image -= image_dm;
CGV_UINT8 tmp_index;
CGV_FLOAT tmp_image;
for (CGV_INT i = 1; i < numEntries; i++)
{
for (CGV_INT j = i; j > 0; j--)
{
if (what[j - 1].image > what[j].image)
{
tmp_index = what[j].index;
tmp_image = what[j].image;
what[j].index = what[j - 1].index;
what[j].image = what[j - 1].image;
what[j - 1].index = tmp_index;
what[j - 1].image = tmp_image;
}
}
}
// got into fundamental simplex
// move coordinate system origin to its center
// i=0 < numEntries avoids varying int division by 0
for (CGV_INT i = 0; i < numEntries; i++)
{
what[i].image = what[i].image - (CGV_FLOAT)(((2.0f * i + 1) - numEntries) / (2.0f * numEntries));
}
image_mm = 0.0F;
image_l = 0.0F;
CGV_INT j = -1;
for (CGV_INT i = 0; i < numEntries; i++)
{
image_l += what[i].image;
if (image_l < image_mm)
{
image_mm = image_l;
j = i;
}
}
j = j + 1;
// avoid j = j%numEntries us this
while (j > numEntries)
j = j - numEntries;
for (CGV_INT i = j; i < numEntries; i++)
{
CGV_UINT8 idx = what[i].index;
CGV_UINT8 pidx = projected_index_out[idx] + 1; //gather_index(projected_index_out,idx)+1;
projected_index_out[idx] = pidx; // scatter_index(projected_index_out,idx,pidx);
}
}
// get minimum index
CGV_UINT8 index_min = projected_index_out[0];
for (CGV_INT i = 1; i < numEntries; i++)
{
if (projected_index_out[i] < index_min)
index_min = projected_index_out[i];
}
// reposition all index by min index (using min index as 0)
for (CGV_INT i = 0; i < numEntries; i++)
{
projected_index_out[i] = clampIndex(projected_index_out[i] - index_min, 0, 15);
}
}
CGV_FLOAT GetQuantizeIndex(CGV_UINT32 index_packed_out[2],
CGV_UINT8 index_out[MAX_SUBSET_SIZE], // OUT:
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries, //IN: range 0..15 (MAX_SUBSET_SIZE)
CGU_INT numClusters,
CGU_UINT8 channels3or4)
{ // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
CGV_FLOAT image_centered[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
CGV_FLOAT image_mean[MAX_CHANNELS];
CGV_FLOAT eigen_vector[MAX_CHANNELS];
CGV_FLOAT covariance_vector[MAX_CHANNELS * MAX_CHANNELS];
GetImageCentered(image_centered, image_mean, image_src, numEntries, channels3or4);
GetCovarianceVector(covariance_vector, image_centered, numEntries, channels3or4);
//-----------------------------------------------------
// check if all covariances are the same
// if so then set all index to same value 0 and return
// use EPSILON to set the limit for all same limit
//-----------------------------------------------------
CGV_FLOAT image_covt = 0.0F;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
image_covt = image_covt + covariance_vector[ch + ch * 4];
if (image_covt < EPSILON)
{
SetDefaultIndex(index_out);
index_packed_out[0] = 0;
index_packed_out[1] = 0;
return 0.;
}
GetEigenVector(eigen_vector, covariance_vector, channels3or4);
CGV_FLOAT image_projected[SOURCE_BLOCK_SIZE];
GetProjecedImage(image_projected, image_centered, numEntries, eigen_vector, channels3or4);
GetProjectedIndex(index_out, image_projected, numClusters, numEntries);
//==========================================
// Refine
//==========================================
CGV_FLOAT image_q = 0.0F;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
eigen_vector[ch] = 0;
for (CGV_INT k = 0; k < numEntries; k++)
eigen_vector[ch] = eigen_vector[ch] + image_centered[k + (ch * SOURCE_BLOCK_SIZE)] * index_out[k];
image_q = image_q + eigen_vector[ch] * eigen_vector[ch];
}
image_q = sqrt(image_q);
// direction needs to be normalized
if (image_q != 0.0F)
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
eigen_vector[ch] = eigen_vector[ch] / image_q;
// Get new projected data
GetProjecedImage(image_projected, image_centered, numEntries, eigen_vector, channels3or4);
GetProjectedIndex(index_out, image_projected, numClusters, numEntries);
// pack the index for use in icmp
pack_index(index_packed_out, index_out);
//===========================
// Calc Error
//===========================
// Get the new image based on new index
CGV_FLOAT image_t = 0.0F;
CGV_FLOAT index_average = 0.0F;
for (CGV_INT ik = 0; ik < numEntries; ik++)
{
index_average = index_average + index_out[ik];
image_t = image_t + index_out[ik] * index_out[ik];
}
index_average = index_average / (CGV_FLOAT)numEntries;
image_t = image_t - index_average * index_average * (CGV_FLOAT)numEntries;
if (image_t != 0.0F)
image_t = 1.0F / image_t;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
eigen_vector[ch] = 0;
for (CGV_INT nk = 0; nk < numEntries; nk++)
eigen_vector[ch] = eigen_vector[ch] + image_centered[nk + (ch * SOURCE_BLOCK_SIZE)] * index_out[nk];
}
CGV_FLOAT image_decomp[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
for (CGV_INT i = 0; i < numEntries; i++)
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
image_decomp[i + (ch * SOURCE_BLOCK_SIZE)] = image_mean[ch] + eigen_vector[ch] * image_t * (index_out[i] - index_average);
CGV_FLOAT err_1 = err_Total(image_src, image_decomp, numEntries, channels3or4);
return err_1;
// return 0.0F;
}
CGV_FLOAT quant_solid_color(CGV_UINT8 index_out[MAX_SUBSET_SIZE],
CGV_INT epo_code_out[2 * MAX_CHANNELS],
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries,
CGU_UINT8 Mi_, // last cluster
CGU_UINT8 bits[3], // including parity
CGU_INT type,
CGU_UINT8 channels3or4 // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
)
{
CGU_INT clogBC7 = 0;
CGU_INT iv = Mi_ + 1;
while (iv >>= 1)
clogBC7++;
// init epo_0
CGV_INT epo_0[2 * MAX_CHANNELS];
SetDefaultEPOCode(epo_0, 0xFF, 0, 0, 0);
CGV_UINT8 image_log = 0;
CGV_UINT8 image_idx = 0;
CGU_BOOL use_par = FALSE;
if (type != 0)
use_par = TRUE;
CGV_FLOAT error_1 = CMP_FLOAT_MAX;
for (CGU_INT pn = 0; pn < npv_nd[channels3or4 - 3][type] && (error_1 != 0.0F); pn++)
{
//1
CGU_INT o1[2 * MAX_CHANNELS]; // = { 0,2 };
CGU_INT o2[2 * MAX_CHANNELS]; // = { 0,2 };
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
//A
o2[ch] = o1[ch] = 0;
o2[4 + ch] = o1[4 + ch] = 2;
if (use_par == TRUE)
{
if (par_vectors_nd[channels3or4 - 3][type][pn][0][ch])
o1[ch] = 1;
else
o1[4 + ch] = 1;
if (par_vectors_nd[channels3or4 - 3][type][pn][1][ch])
o2[ch] = 1;
else
o2[4 + ch] = 1;
}
} //A
CGV_INT image_tcr[MAX_CHANNELS];
CGV_INT epo_dr_0[MAX_CHANNELS];
CGV_FLOAT error_tr;
CGV_FLOAT error_0 = CMP_FLOAT_MAX;
for (CGV_UINT8 iclogBC7 = 0; iclogBC7 < (1 << clogBC7) && (error_0 != 0); iclogBC7++)
{
//E
CGV_FLOAT error_t = 0;
CGV_INT t1o[MAX_CHANNELS], t2o[MAX_CHANNELS];
for (CGU_UINT8 ch1 = 0; ch1 < channels3or4; ch1++)
{
// D
CGV_FLOAT error_ta = CMP_FLOAT_MAX;
for (CGU_INT t1 = o1[ch1]; t1 < o1[4 + ch1]; t1++)
{
// C
// This is needed for non-integer mean points of "collapsed" sets
for (CGU_INT t2 = o2[ch1]; t2 < o2[4 + ch1]; t2++)
{
// B
CGV_INT image_tf;
CGV_INT image_tc;
image_tf = (CGV_INT)cmp_floor(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]);
image_tc = (CGV_INT)ceil(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]);
#ifdef USE_BC7_SP_ERR_IDX
CGV_FLOAT err_tf = get_sperr(clogBC7, bits[ch1], image_tf, t1, t2, iclogBC7);
CGV_FLOAT err_tc = get_sperr(clogBC7, bits[ch1], image_tc, t1, t2, iclogBC7);
if (err_tf > err_tc)
image_tcr[ch1] = image_tc;
else if (err_tf < err_tc)
image_tcr[ch1] = image_tf;
else
image_tcr[ch1] = (CGV_INT)cmp_floor(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)] + 0.5F);
//image_tcr[ch1] = image_tf + (image_tc - image_tf)/2;
//===============================
// Refine this for better quality!
//===============================
error_tr = get_sperr(clogBC7, bits[ch1], image_tcr[ch1], t1, t2, iclogBC7);
error_tr = (error_tr * error_tr) + 2 * error_tr * img_absf(image_tcr[ch1] - image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]) +
(image_tcr[ch1] - image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]) *
(image_tcr[ch1] - image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)]);
if (error_tr < error_ta)
{
error_ta = error_tr;
t1o[ch1] = t1;
t2o[ch1] = t2;
epo_dr_0[ch1] = clampEPO(image_tcr[ch1], 0, 255);
}
#else
image_tcr[ch1] = cmp_floor(image_src[COMP_RED + (ch1 * SOURCE_BLOCK_SIZE)] + 0.5F);
error_ta = 0;
t1o[ch1] = t1;
t2o[ch1] = t2;
epo_dr_0[ch1] = clampEPO(image_tcr[ch1], 0, 255);
#endif
} // B
} //C
error_t += error_ta;
} // D
if (error_t < error_0)
{
// We have a solid color: Use image src if on GPU
image_log = iclogBC7;
image_idx = image_log;
#ifdef ASPM_GPU // This needs improving
CGV_FLOAT MinC[4] = {255, 255, 255, 255};
CGV_FLOAT MaxC[4] = {0, 0, 0, 0};
// get min max colors
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
for (CGV_INT k = 0; k < numEntries; k++)
{
if (image_src[k + ch * SOURCE_BLOCK_SIZE] < MinC[ch])
MinC[ch] = image_src[k + ch * SOURCE_BLOCK_SIZE];
if (image_src[k + ch * SOURCE_BLOCK_SIZE] > MaxC[ch])
MaxC[ch] = image_src[k + ch * SOURCE_BLOCK_SIZE];
}
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
epo_0[ch] = MinC[ch];
epo_0[4 + ch] = MaxC[ch];
}
#else // This is good on CPU
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
#ifdef USE_BC7_SP_ERR_IDX
if (BC7EncodeRamps.ramp_init)
{
CGV_INT index = (CLT(clogBC7) * 4 * 256 * 2 * 2 * 16 * 2) + (BTT(bits[ch]) * 256 * 2 * 2 * 16 * 2) + (epo_dr_0[ch] * 2 * 2 * 16 * 2) +
(t1o[ch] * 2 * 16 * 2) + (t2o[ch] * 16 * 2) + (iclogBC7 * 2);
epo_0[ch] = BC7EncodeRamps.sp_idx[index + 0] & 0xFF; // gather_epocode(u_BC7Encode->sp_idx,index+0)&0xFF;
epo_0[4 + ch] = BC7EncodeRamps.sp_idx[index + 1] & 0xFF; // gather_epocode(u_BC7Encode->sp_idx,index+1)&0xFF;
}
else
{
epo_0[ch] = 0;
epo_0[4 + ch] = 0;
}
#else
epo_0[ch] = 0;
epo_0[4 + ch] = 0;
#endif
}
#endif
error_0 = error_t;
}
//if (error_0 == 0)
// break;
} // E
if (error_0 < error_1)
{
image_idx = image_log;
for (CGU_UINT8 chE = 0; chE < channels3or4; chE++)
{
epo_code_out[chE] = epo_0[chE];
epo_code_out[4 + chE] = epo_0[4 + chE];
}
error_1 = error_0;
}
} //1
// Get Image error
CGV_FLOAT image_decomp[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
for (CGV_INT i = 0; i < numEntries; i++)
{
index_out[i] = image_idx;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
image_decomp[i + (ch * SOURCE_BLOCK_SIZE)] = GetRamp(clogBC7, bits[ch], epo_code_out[ch], epo_code_out[4 + ch], image_idx);
}
}
// Do we need to do this rather then err_1 * numEntries
CGV_FLOAT error_quant;
error_quant = err_Total(image_src, image_decomp, numEntries, channels3or4);
return error_quant;
//return err_1 * numEntries;
}
CGV_FLOAT requantized_image_err(CGV_UINT8 index_out[MAX_SUBSET_SIZE],
CGV_INT epo_code[2 * MAX_CHANNELS],
CGU_INT clogBC7,
CGU_UINT8 max_bits[MAX_CHANNELS],
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries, // max 16
CGU_UINT8 channels3or4)
{ // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
//=========================================
// requantized image based on new epo_code
//=========================================
CGV_FLOAT image_requantize[SOURCE_BLOCK_SIZE][MAX_CHANNELS];
CGV_FLOAT err_r = 0.0F;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
image_requantize[k][ch] = GetRamp(clogBC7, max_bits[ch], epo_code[ch], epo_code[4 + ch], (CGV_UINT8)k);
}
}
//=========================================
// Calc the error for the requantized image
//=========================================
for (CGV_INT k = 0; k < numEntries; k++)
{
CGV_FLOAT err_cmin = CMP_FLOAT_MAX;
CGV_INT hold_index_j = 0;
for (CGV_INT iclogBC7 = 0; iclogBC7 < (1 << clogBC7); iclogBC7++)
{
CGV_FLOAT image_err = 0.0F;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
image_err += sq_image(image_requantize[iclogBC7][ch] - image_src[k + (ch * SOURCE_BLOCK_SIZE)]);
}
if (image_err < err_cmin)
{
err_cmin = image_err;
hold_index_j = iclogBC7;
}
}
index_out[k] = (CGV_UINT8)hold_index_j;
err_r += err_cmin;
}
return err_r;
}
CGU_BOOL get_ideal_cluster(CGV_FLOAT image_out[2 * MAX_CHANNELS],
CGV_UINT8 index_in[MAX_SUBSET_SIZE],
CGU_INT Mi_,
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries,
CGU_UINT8 channels3or4)
{
// get ideal cluster centers
CGV_FLOAT image_cluster_mean[SOURCE_BLOCK_SIZE][MAX_CHANNELS];
GetClusterMean(image_cluster_mean, image_src, index_in, numEntries, channels3or4); // unrounded
CGV_FLOAT image_matrix0[2] = {0, 0}; // matrix /inverse matrix
CGV_FLOAT image_matrix1[2] = {0, 0}; // matrix /inverse matrix
CGV_FLOAT image_rp[2 * MAX_CHANNELS]; // right part for RMS fit problem
for (CGU_INT i = 0; i < 2 * MAX_CHANNELS; i++)
image_rp[i] = 0;
// weight with cnt if runnning on compacted index
for (CGV_INT k = 0; k < numEntries; k++)
{
image_matrix0[0] += (Mi_ - index_in[k]) * (Mi_ - index_in[k]);
image_matrix0[1] += index_in[k] * (Mi_ - index_in[k]); // im is symmetric
image_matrix1[1] += index_in[k] * index_in[k];
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
image_rp[ch] += (Mi_ - index_in[k]) * image_cluster_mean[index_in[k]][ch];
image_rp[4 + ch] += index_in[k] * image_cluster_mean[index_in[k]][ch];
}
}
CGV_FLOAT matrix_dd = image_matrix0[0] * image_matrix1[1] - image_matrix0[1] * image_matrix0[1];
// assert(matrix_dd !=0);
// matrix_dd=0 means that index_cidx[k] and (Mi_-index_cidx[k]) collinear which implies only one active index;
// taken care of separately
if (matrix_dd == 0)
{
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
image_out[ch] = 0;
image_out[4 + ch] = 0;
}
return FALSE;
}
image_matrix1[0] = image_matrix0[0];
image_matrix0[0] = image_matrix1[1] / matrix_dd;
image_matrix1[1] = image_matrix1[0] / matrix_dd;
image_matrix1[0] = image_matrix0[1] = -image_matrix0[1] / matrix_dd;
CGV_FLOAT Mif = (CGV_FLOAT)Mi_;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
image_out[ch] = (image_matrix0[0] * image_rp[ch] + image_matrix0[1] * image_rp[4 + ch]) * Mif;
image_out[4 + ch] = (image_matrix1[0] * image_rp[ch] + image_matrix1[1] * image_rp[4 + ch]) * Mif;
}
return TRUE;
}
CGV_FLOAT shake(CGV_INT epo_code_shaker_out[2 * MAX_CHANNELS],
CGV_FLOAT image_ep[2 * MAX_CHANNELS],
CGV_UINT8 index_cidx[MAX_SUBSET_SIZE],
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGU_INT clogBC7,
CGU_INT type,
CGU_UINT8 max_bits[MAX_CHANNELS],
CGU_UINT8 use_par,
CGV_INT numEntries, // max 16
CGU_UINT8 channels3or4)
{
#define SHAKESIZE1 1
#define SHAKESIZE2 2
// shake single or - cartesian
// shake odd/odd and even/even or - same parity
// shake odd/odd odd/even , even/odd and even/even - bcc
CGV_FLOAT best_err = CMP_FLOAT_MAX;
CGV_FLOAT err_ed[16] = {0};
CGV_INT epo_code_par[2][2][2][MAX_CHANNELS];
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
CGU_UINT8 ppA = 0;
CGU_UINT8 ppB = 0;
CGU_UINT8 rr = (use_par ? 2 : 1);
CGV_INT epo_code_epi[2][2]; // first/second, coord, begin rage end range
for (ppA = 0; ppA < rr; ppA++)
{ // loop max =2
for (ppB = 0; ppB < rr; ppB++)
{ //loop max =2
// set default ranges
epo_code_epi[0][0] = epo_code_epi[0][1] = ep_find_floor(image_ep[ch], max_bits[ch], use_par, ppA);
epo_code_epi[1][0] = epo_code_epi[1][1] = ep_find_floor(image_ep[4 + ch], max_bits[ch], use_par, ppB);
// set begin range
epo_code_epi[0][0] -= ((epo_code_epi[0][0] < SHAKESIZE1 ? epo_code_epi[0][0] : SHAKESIZE1)) & (~use_par);
epo_code_epi[1][0] -= ((epo_code_epi[1][0] < SHAKESIZE1 ? epo_code_epi[1][0] : SHAKESIZE1)) & (~use_par);
// set end range
epo_code_epi[0][1] +=
((1 << max_bits[ch]) - 1 - epo_code_epi[0][1] < SHAKESIZE2 ? (1 << max_bits[ch]) - 1 - epo_code_epi[0][1] : SHAKESIZE2) & (~use_par);
epo_code_epi[1][1] +=
((1 << max_bits[ch]) - 1 - epo_code_epi[1][1] < SHAKESIZE2 ? (1 << max_bits[ch]) - 1 - epo_code_epi[1][1] : SHAKESIZE2) & (~use_par);
CGV_INT step = (1 << use_par);
err_ed[(ppA * 8) + (ppB * 4) + ch] = CMP_FLOAT_MAX;
for (CGV_INT epo_p1 = epo_code_epi[0][0]; epo_p1 <= epo_code_epi[0][1]; epo_p1 += step)
{
for (CGV_INT epo_p2 = epo_code_epi[1][0]; epo_p2 <= epo_code_epi[1][1]; epo_p2 += step)
{
CGV_FLOAT image_square_diff = 0.0F;
CGV_INT _mc = numEntries;
CGV_FLOAT image_ramp;
while (_mc > 0)
{
image_ramp = GetRamp(clogBC7, max_bits[ch], epo_p1, epo_p2, index_cidx[_mc - 1]);
image_square_diff += sq_image(image_ramp - image_src[(_mc - 1) + (ch * SOURCE_BLOCK_SIZE)]);
_mc--;
}
if (image_square_diff < err_ed[(ppA * 8) + (ppB * 4) + ch])
{
err_ed[(ppA * 8) + (ppB * 4) + ch] = image_square_diff;
epo_code_par[ppA][ppB][0][ch] = epo_p1;
epo_code_par[ppA][ppB][1][ch] = epo_p2;
}
}
}
} // pp1
} // pp0
} // j
//---------------------------------------------------------
for (CGU_INT pn = 0; pn < npv_nd[channels3or4 - 3][type]; pn++)
{
CGV_FLOAT err_2 = 0.0F;
CGU_INT d1;
CGU_INT d2;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
d1 = par_vectors_nd[channels3or4 - 3][type][pn][0][ch];
d2 = par_vectors_nd[channels3or4 - 3][type][pn][1][ch];
err_2 += err_ed[(d1 * 8) + (d2 * 4) + ch];
}
if (err_2 < best_err)
{
best_err = err_2;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
d1 = par_vectors_nd[channels3or4 - 3][type][pn][0][ch];
d2 = par_vectors_nd[channels3or4 - 3][type][pn][1][ch];
epo_code_shaker_out[ch] = epo_code_par[d1][d2][0][ch];
epo_code_shaker_out[4 + ch] = epo_code_par[d1][d2][1][ch];
}
}
}
return best_err;
}
CGV_FLOAT optimize_IndexAndEndPoints(CGV_UINT8 index_io[MAX_SUBSET_SIZE],
CGV_INT epo_code_out[8],
CGV_FLOAT image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS],
CGV_INT numEntries, // max 16
CGU_UINT8 Mi_, // last cluster , This should be no larger than 16
CGU_UINT8 bits, // total for all components
CGU_UINT8 channels3or4, // IN: 3 = RGB or 4 = RGBA (4 = MAX_CHANNELS)
CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[])
{
CGV_FLOAT err_best = CMP_FLOAT_MAX;
CGU_INT type;
CGU_UINT8 channels2 = 2 * channels3or4;
type = bits % channels2;
CGU_UINT8 use_par = (type != 0);
CGU_UINT8 max_bits[MAX_CHANNELS];
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
max_bits[ch] = (bits + channels2 - 1) / channels2;
CGU_INT iv;
CGU_INT clogBC7 = 0;
iv = Mi_;
while (iv >>= 1)
clogBC7++;
CGU_INT clt_clogBC7 = CLT(clogBC7);
if (clt_clogBC7 > 3)
{
ASPM_PRINT(("Err: optimize_IndexAndEndPoints, clt_clogBC7\n"));
return CMP_FLOAT_MAX;
}
Mi_ = Mi_ - 1;
CGV_UINT8 MaxIndex;
CGV_UINT8 index_tmp[MAX_SUBSET_SIZE];
CGU_INT maxTry = 5;
CGV_UINT8 index_best[MAX_SUBSET_SIZE];
for (CGV_INT k = 0; k < numEntries; k++)
{
index_best[k] = index_tmp[k] = clampIndex(index_io[k], 0, 15);
}
CGV_INT epo_code_best[2 * MAX_CHANNELS];
SetDefaultEPOCode(epo_code_out, 0xFF, 0, 0, 0);
SetDefaultEPOCode(epo_code_best, 0, 0, 0, 0);
CGV_FLOAT err_requant = 0.0F;
MaxIndex = index_collapse(index_tmp, numEntries);
//===============================
// we have a solid color 4x4 block
//===============================
if (MaxIndex == 0)
{
return quant_solid_color(index_io, epo_code_out, image_src, numEntries, Mi_, max_bits, type, channels3or4);
}
do
{
//===============================
// We have ramp colors to process
//===============================
CGV_FLOAT err_cluster = CMP_FLOAT_MAX;
CGV_FLOAT err_shake;
CGV_UINT8 index_cluster[MAX_PARTITION_ENTRIES];
for (CGV_UINT8 index_slope = 1; (MaxIndex != 0) && (index_slope * MaxIndex <= Mi_); index_slope++)
{
for (CGV_UINT8 index_offset = 0; index_offset <= Mi_ - index_slope * MaxIndex; index_offset++)
{
//-------------------------------------
// set a new index data to try
//-------------------------------------
for (CGV_INT k = 0; k < numEntries; k++)
index_cluster[k] = index_tmp[k] * index_slope + index_offset;
CGV_FLOAT image_cluster[2 * MAX_CHANNELS];
CGV_INT epo_code_shake[2 * MAX_CHANNELS];
SetDefaultEPOCode(epo_code_shake, 0, 0, 0xFF, 0);
if (get_ideal_cluster(image_cluster, index_cluster, Mi_, image_src, numEntries, channels3or4) == FALSE)
{
break;
}
err_shake = shake(epo_code_shake, // return new epo
image_cluster,
index_cluster,
image_src,
clogBC7,
type,
max_bits,
use_par,
numEntries, // max 16
channels3or4);
if (err_shake < err_cluster)
{
err_cluster = err_shake;
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
epo_code_best[ch] = clampEPO(epo_code_shake[ch], 0, 255);
epo_code_best[4 + ch] = clampEPO(epo_code_shake[4 + ch], 0, 255);
}
}
}
}
CGV_INT change = 0;
CGV_INT better = 0;
if ((err_cluster != CMP_FLOAT_MAX))
{
//=========================
// test results for quality
//=========================
err_requant = requantized_image_err(index_best, // new index results
epo_code_best, // prior result input
clogBC7,
max_bits,
image_src,
numEntries,
channels3or4);
// change/better
// Has the index values changed from that last set
for (CGV_INT k = 0; k < numEntries; k++)
change = change || (index_cluster[k] != index_best[k]);
if (err_requant < err_best)
{
better = 1;
for (CGV_INT k = 0; k < numEntries; k++)
{
index_io[k] = index_tmp[k] = index_best[k];
}
for (CGU_UINT8 ch = 0; ch < channels3or4; ch++)
{
epo_code_out[ch] = epo_code_best[0 * 4 + ch];
epo_code_out[4 + ch] = epo_code_best[1 * 4 + ch];
}
err_best = err_requant;
}
}
// Early out if we have our target err
if (err_best <= u_BC7Encode->errorThreshold)
{
break;
}
CGV_INT done;
done = !(change && better);
if ((maxTry > 0) && (!done))
{
maxTry--;
MaxIndex = index_collapse(index_tmp, numEntries);
}
else
{
maxTry = 0;
}
} while (maxTry);
if (err_best == CMP_FLOAT_MAX)
{
ASPM_PRINT(("Err: requantized_image_err\n"));
}
return err_best;
}
CGU_UINT8 get_partitionsToTry(CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[], CGU_UINT8 maxPartitions)
{
CGU_FLOAT u_minPartitionSearchSize = 0.30f;
if (u_BC7Encode->quality <= BC7_qFAST_THRESHOLD)
{ // Using this to match performance and quality of CPU code
u_minPartitionSearchSize = u_minPartitionSearchSize + (u_BC7Encode->quality * BC7_qFAST_THRESHOLD);
}
else
{
u_minPartitionSearchSize = u_BC7Encode->quality;
}
return (CGU_UINT8)(maxPartitions * u_minPartitionSearchSize);
}
INLINE void cmp_encode_swap(CGV_INT endpoint[], CGU_INT channels, CGV_UINT8 block_index[MAX_SUBSET_SIZE], CGU_INT bits)
{
CGU_INT levels = 1 << bits;
if (block_index[0] >= levels / 2)
{
cmp_swap_epo(&endpoint[0], &endpoint[channels], channels);
for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
#ifdef ASPM_GPU
block_index[k] = (levels - 1) - block_index[k];
#else
block_index[k] = CGV_UINT8(levels - 1) - block_index[k];
#endif
}
}
void cmp_encode_index(CGV_UINT8 data[16], CGU_INT* CMP_UNIFORM pPos, CGV_UINT8 block_index[MAX_SUBSET_SIZE], CGU_INT bits)
{
cmp_Write8Bit(data, pPos, bits - 1, block_index[0]);
for (CGU_INT j = 1; j < SOURCE_BLOCK_SIZE; j++)
{
CGV_UINT8 qbits = block_index[j] & 0xFF;
cmp_Write8Bit(data, pPos, bits, qbits);
}
}
void encode_endpoint(CGV_UINT8 data[16], CGU_INT* CMP_UNIFORM pPos, CGV_UINT8 block_index[16], CGU_INT bits, CGV_UINT32 flips)
{
CGU_INT levels = 1 << bits;
CGV_INT flips_shifted = flips;
for (CGU_INT k1 = 0; k1 < 16; k1++)
{
CGV_UINT8 qbits_shifted = block_index[k1];
for (CGU_INT k2 = 0; k2 < 8; k2++)
{
CGV_INT q = qbits_shifted & 15;
if ((flips_shifted & 1) > 0)
q = (levels - 1) - q;
if (k1 == 0 && k2 == 0)
cmp_Write8Bit(data, pPos, bits - 1, CMP_STATIC_CAST(CGV_UINT8, q));
else
cmp_Write8Bit(data, pPos, bits, CMP_STATIC_CAST(CGV_UINT8, q));
qbits_shifted >>= 4;
flips_shifted >>= 1;
}
}
}
INLINE CGV_UINT32 pow32(CGV_UINT32 x)
{
return 1 << x;
}
void Encode_mode01237(CGU_INT blockMode,
CGV_UINT8 bestPartition,
CGV_UINT32 packedEndpoints[6],
CGV_UINT8 index16[16],
CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE])
{
CGU_INT partitionBits;
CGU_UINT32 componentBits;
CGU_UINT8 maxSubsets;
CGU_INT channels;
CGU_UINT8 indexBits;
switch (blockMode)
{
case 0:
componentBits = 4;
maxSubsets = 3;
partitionBits = 4;
channels = 3;
indexBits = 3;
break;
case 2:
componentBits = 5;
maxSubsets = 3;
partitionBits = 6;
channels = 3;
indexBits = 2;
break;
case 3:
componentBits = 7;
maxSubsets = 2;
partitionBits = 6;
channels = 3;
indexBits = 2;
break;
case 7:
componentBits = 5;
maxSubsets = 2;
partitionBits = 6;
channels = 4;
indexBits = 2;
break;
default:
case 1:
componentBits = 6;
maxSubsets = 2;
partitionBits = 6;
channels = 3;
indexBits = 3;
break;
}
CGV_UINT8 blockindex[SOURCE_BLOCK_SIZE];
CGV_INT indexBitsV = indexBits;
for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
cmp_out[k] = 0;
// mode 0 = 1, mode 1 = 01, mode 2 = 001, mode 3 = 0001, ...
CGU_INT bitPosition = blockMode;
cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
// Write partition bits
cmp_Write8Bit(cmp_out, &bitPosition, partitionBits, bestPartition);
// Sort out the index set and tag whether we need to flip the
// endpoints to get the correct state in the implicit index bits
// The implicitly encoded MSB of the fixup index must be 0
CGV_INT fixup[3];
get_fixuptable(fixup, (maxSubsets == 2 ? bestPartition : bestPartition + 64));
// Extract indices and mark subsets that need to have their colours flipped to get the
// right state for the implicit MSB of the fixup index
CGV_INT flipColours[3] = {0, 0, 0};
for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
blockindex[k] = index16[k];
for (CGU_UINT8 j = 0; j < maxSubsets; j++)
{
if (k == fixup[j])
{
if (blockindex[k] & (1 << (indexBitsV - 1)))
{
flipColours[j] = 1;
}
}
}
}
// Now we must flip the endpoints where necessary so that the implicitly encoded
// index bits have the correct state
for (CGU_INT subset = 0; subset < maxSubsets; subset++)
{
if (flipColours[subset] == 1)
{
CGV_UINT32 temp = packedEndpoints[subset * 2 + 0];
packedEndpoints[subset * 2 + 0] = packedEndpoints[subset * 2 + 1];
packedEndpoints[subset * 2 + 1] = temp;
}
}
// ...next flip the indices where necessary
for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
CGV_UINT8 partsub = get_partition_subset(bestPartition, maxSubsets, k);
if (flipColours[partsub] == 1)
{
blockindex[k] = ((1 << indexBitsV) - 1) - blockindex[k];
}
}
// Endpoints are stored in the following order RRRR GGGG BBBB (AAAA) (PPPP)
// i.e. components are packed together
CGV_UINT32 unpackedColours[MAX_SUBSETS * 2 * MAX_CHANNELS];
CGV_UINT8 parityBits[MAX_SUBSETS][2];
// Unpack the colour values for the subsets
for (CGU_INT subset = 0; subset < maxSubsets; subset++)
{
CGV_UINT32 packedColours[2] = {packedEndpoints[subset * 2 + 0], packedEndpoints[subset * 2 + 1]};
if (blockMode == 0 || blockMode == 3 || blockMode == 7)
{ // TWO_PBIT
parityBits[subset][0] = packedColours[0] & 1;
parityBits[subset][1] = packedColours[1] & 1;
packedColours[0] >>= 1;
packedColours[1] >>= 1;
}
else if (blockMode == 1)
{ // ONE_PBIT
parityBits[subset][0] = packedColours[1] & 1;
parityBits[subset][1] = packedColours[1] & 1;
packedColours[0] >>= 1;
packedColours[1] >>= 1;
}
else if (blockMode == 2)
{
parityBits[subset][0] = 0;
parityBits[subset][1] = 0;
}
for (CGU_INT ch = 0; ch < channels; ch++)
{
unpackedColours[(subset * 2 + 0) * MAX_CHANNELS + ch] = packedColours[0] & ((1 << componentBits) - 1);
unpackedColours[(subset * 2 + 1) * MAX_CHANNELS + ch] = packedColours[1] & ((1 << componentBits) - 1);
packedColours[0] >>= componentBits;
packedColours[1] >>= componentBits;
}
}
// Loop over component
for (CGU_INT ch = 0; ch < channels; ch++)
{
// loop over subsets
for (CGU_INT subset = 0; subset < maxSubsets; subset++)
{
cmp_Write8Bit(cmp_out, &bitPosition, componentBits, unpackedColours[(subset * 2 + 0) * MAX_CHANNELS + ch] & 0xFF);
cmp_Write8Bit(cmp_out, &bitPosition, componentBits, unpackedColours[(subset * 2 + 1) * MAX_CHANNELS + ch] & 0xFF);
}
}
// write parity bits
if (blockMode != 2)
{
for (CGV_INT subset = 0; subset < maxSubsets; subset++)
{
if (blockMode == 1)
{ // ONE_PBIT
cmp_Write8Bit(cmp_out, &bitPosition, 1, parityBits[subset][0] & 0x01);
}
else
{ // TWO_PBIT
cmp_Write8Bit(cmp_out, &bitPosition, 1, parityBits[subset][0] & 0x01);
cmp_Write8Bit(cmp_out, &bitPosition, 1, parityBits[subset][1] & 0x01);
}
}
}
// Encode the index bits
CGV_INT bitPositionV = bitPosition;
for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
CGV_UINT8 partsub = get_partition_subset(bestPartition, maxSubsets, k);
// If this is a fixup index then drop the MSB which is implicitly 0
if (k == fixup[partsub])
{
cmp_Write8BitV(cmp_out, bitPositionV, indexBits - 1, blockindex[k] & 0x07F);
bitPositionV += indexBits - 1;
}
else
{
cmp_Write8BitV(cmp_out, bitPositionV, indexBits, blockindex[k]);
bitPositionV += indexBits;
}
}
}
void Encode_mode4(CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE], varying cmp_mode_parameters* CMP_UNIFORM params)
{
CGU_INT bitPosition = 4; // Position the pointer at the LSB
for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
cmp_out[k] = 0;
// mode 4 (5 bits) 00001
cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
// rotation 2 bits
cmp_Write8Bit(cmp_out, &bitPosition, 2, CMP_STATIC_CAST(CGV_UINT8, params->rotated_channel));
// idxMode 1 bit
cmp_Write8Bit(cmp_out, &bitPosition, 1, CMP_STATIC_CAST(CGV_UINT8, params->idxMode));
CGU_INT idxBits[2] = {2, 3};
if (params->idxMode)
{
idxBits[0] = 3;
idxBits[1] = 2;
// Indicate if we need to fixup the index
cmp_swap_index(params->color_index, params->alpha_index, 16);
cmp_encode_swap(params->alpha_qendpoint, 4, params->color_index, 2);
cmp_encode_swap(params->color_qendpoint, 4, params->alpha_index, 3);
}
else
{
cmp_encode_swap(params->color_qendpoint, 4, params->color_index, 2);
cmp_encode_swap(params->alpha_qendpoint, 4, params->alpha_index, 3);
}
// color endpoints 5 bits each
// R0 : R1
// G0 : G1
// B0 : B1
for (CGU_INT component = 0; component < 3; component++)
{
cmp_Write8Bit(cmp_out, &bitPosition, 5, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[component]));
cmp_Write8Bit(cmp_out, &bitPosition, 5, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[4 + component]));
}
// alpha endpoints (6 bits each)
// A0 : A1
cmp_Write8Bit(cmp_out, &bitPosition, 6, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[0]));
cmp_Write8Bit(cmp_out, &bitPosition, 6, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[4]));
// index 2 bits each (31 bits total)
cmp_encode_index(cmp_out, &bitPosition, params->color_index, 2);
// index 3 bits each (47 bits total)
cmp_encode_index(cmp_out, &bitPosition, params->alpha_index, 3);
}
void Encode_mode5(CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE], varying cmp_mode_parameters* CMP_UNIFORM params)
{
for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
cmp_out[k] = 0;
// mode 5 bits = 000001
CGU_INT bitPosition = 5; // Position the pointer at the LSB
cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
// Write 2 bit rotation
cmp_Write8Bit(cmp_out, &bitPosition, 2, CMP_STATIC_CAST(CGV_UINT8, params->rotated_channel));
cmp_encode_swap(params->color_qendpoint, 4, params->color_index, 2);
cmp_encode_swap(params->alpha_qendpoint, 4, params->alpha_index, 2);
// color endpoints (7 bits each)
// R0 : R1
// G0 : G1
// B0 : B1
for (CGU_INT component = 0; component < 3; component++)
{
cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[component]));
cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, params->color_qendpoint[4 + component]));
}
// alpha endpoints (8 bits each)
// A0 : A1
cmp_Write8Bit(cmp_out, &bitPosition, 8, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[0]));
cmp_Write8Bit(cmp_out, &bitPosition, 8, CMP_STATIC_CAST(CGV_UINT8, params->alpha_qendpoint[4]));
// color index 2 bits each (31 bits total)
// alpha index 2 bits each (31 bits total)
cmp_encode_index(cmp_out, &bitPosition, params->color_index, 2);
cmp_encode_index(cmp_out, &bitPosition, params->alpha_index, 2);
}
void Encode_mode6(CGV_UINT8 index[MAX_SUBSET_SIZE], CGV_INT epo_code[8], CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE])
{
for (CGU_INT k = 0; k < COMPRESSED_BLOCK_SIZE; k++)
cmp_out[k] = 0;
cmp_encode_swap(epo_code, 4, index, 4);
// Mode = 6 bits = 0000001
CGU_INT bitPosition = 6; // Position the pointer at the LSB
cmp_Write8Bit(cmp_out, &bitPosition, 1, 1);
// endpoints
for (CGU_INT p = 0; p < 4; p++)
{
cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, epo_code[0 + p] >> 1));
cmp_Write8Bit(cmp_out, &bitPosition, 7, CMP_STATIC_CAST(CGV_UINT8, epo_code[4 + p] >> 1));
}
// p bits
cmp_Write8Bit(cmp_out, &bitPosition, 1, epo_code[0] & 1);
cmp_Write8Bit(cmp_out, &bitPosition, 1, epo_code[4] & 1);
// quantized values
cmp_encode_index(cmp_out, &bitPosition, index, 4);
}
void Compress_mode01237(CGU_INT blockMode, BC7_EncodeState EncodeState[], CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[])
{
CGV_UINT8 storedBestindex[MAX_PARTITIONS][MAX_SUBSETS][MAX_SUBSET_SIZE];
CGV_FLOAT storedError[MAX_PARTITIONS];
CGV_UINT8 sortedPartition[MAX_PARTITIONS];
EncodeState->numPartitionModes = 64;
EncodeState->maxSubSets = 2;
if (blockMode == 0)
{
EncodeState->numPartitionModes = 16;
EncodeState->channels3or4 = 3;
EncodeState->bits = 26;
EncodeState->clusters = 8;
EncodeState->componentBits = 4;
EncodeState->maxSubSets = 3;
}
else if (blockMode == 2)
{
EncodeState->channels3or4 = 3;
EncodeState->bits = 30;
EncodeState->clusters = 4;
EncodeState->componentBits = 5;
EncodeState->maxSubSets = 3;
}
else if (blockMode == 1)
{
EncodeState->channels3or4 = 3;
EncodeState->bits = 37;
EncodeState->clusters = 8;
EncodeState->componentBits = 6;
}
else if (blockMode == 3)
{
EncodeState->channels3or4 = 3;
EncodeState->bits = 44;
EncodeState->clusters = 4;
EncodeState->componentBits = 7;
}
else if (blockMode == 7)
{
EncodeState->channels3or4 = 4;
EncodeState->bits = 42; // (2* (R 5 + G 5 + B 5 + A 5)) + 2 parity bits
EncodeState->clusters = 4;
EncodeState->componentBits = 5; // 5 bit components
}
CGV_FLOAT image_subsets[MAX_SUBSETS][MAX_SUBSET_SIZE][MAX_CHANNELS];
CGV_INT subset_entryCount[MAX_SUBSETS] = {0, 0, 0};
// Loop over the available partitions for the block mode and quantize them
// to figure out the best candidates for further refinement
CGU_UINT8 mode_partitionsToTry;
mode_partitionsToTry = get_partitionsToTry(u_BC7Encode, EncodeState->numPartitionModes);
CGV_UINT8 bestPartition = 0;
for (CGU_INT mode_blockPartition = 0; mode_blockPartition < mode_partitionsToTry; mode_blockPartition++)
{
GetPartitionSubSet_mode01237(
image_subsets, subset_entryCount, CMP_STATIC_CAST(CGV_UINT8, mode_blockPartition), EncodeState->image_src, blockMode, EncodeState->channels3or4);
CGV_FLOAT subset_image_src[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
CGV_UINT8 index_out1[SOURCE_BLOCK_SIZE];
CGV_FLOAT err_quant = 0.0F;
// Store the quntize error for this partition to be sorted and processed later
for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
{
CGV_INT numEntries = subset_entryCount[subset];
for (CGU_INT ii = 0; ii < SOURCE_BLOCK_SIZE; ii++)
{
subset_image_src[ii + COMP_RED * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][0];
subset_image_src[ii + COMP_GREEN * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][1];
subset_image_src[ii + COMP_BLUE * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][2];
subset_image_src[ii + COMP_ALPHA * SOURCE_BLOCK_SIZE] = image_subsets[subset][ii][3];
}
CGV_UINT32 color_index2[2];
err_quant += GetQuantizeIndex(color_index2, index_out1, subset_image_src, numEntries, EncodeState->clusters, EncodeState->channels3or4);
for (CGV_INT idx = 0; idx < numEntries; idx++)
{
storedBestindex[mode_blockPartition][subset][idx] = index_out1[idx];
}
}
storedError[mode_blockPartition] = err_quant;
}
// Sort the results
sortPartitionProjection(storedError, sortedPartition, mode_partitionsToTry);
CGV_INT epo_code[MAX_SUBSETS * 2 * MAX_CHANNELS];
CGV_INT bestEndpoints[MAX_SUBSETS * 2 * MAX_CHANNELS];
CGV_UINT8 bestindex[MAX_SUBSETS * MAX_SUBSET_SIZE];
CGV_INT bestEntryCount[MAX_SUBSETS];
CGV_UINT8 bestindex16[MAX_SUBSET_SIZE];
// Extensive shaking is most important when the ramp is short, and
// when we have less index. On a long ramp the quality of the
// initial quantizing is relatively more important
// We modulate the shake size according to the number of ramp index
// - the more index we have the less shaking should be required to find a near
// optimal match
CGU_UINT8 numShakeAttempts = max8(1, min8((CGU_UINT8)cmp_floor(8 * u_BC7Encode->quality + 0.5), mode_partitionsToTry));
CGV_FLOAT err_best = CMP_FLOAT_MAX;
// Now do the endpoint shaking
for (CGU_INT nSA = 0; nSA < numShakeAttempts; nSA++)
{
CGV_FLOAT err_optimized = 0.0F;
CGV_UINT8 sortedBlockPartition;
sortedBlockPartition = sortedPartition[nSA];
//********************************************
// Get the partition shape for the given mode
//********************************************
GetPartitionSubSet_mode01237(image_subsets, subset_entryCount, sortedBlockPartition, EncodeState->image_src, blockMode, EncodeState->channels3or4);
//*****************************
// Process the partition shape
//*****************************
for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
{
CGV_INT numEntries = subset_entryCount[subset];
CGV_FLOAT src_image_block[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
CGV_UINT8 index_io[MAX_SUBSET_SIZE];
CGV_INT tmp_epo_code[8];
for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
src_image_block[k + COMP_RED * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][0];
src_image_block[k + COMP_GREEN * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][1];
src_image_block[k + COMP_BLUE * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][2];
src_image_block[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] = image_subsets[subset][k][3];
}
for (CGU_INT k = 0; k < MAX_SUBSET_SIZE; k++)
{
index_io[k] = storedBestindex[sortedBlockPartition][subset][k];
}
err_optimized += optimize_IndexAndEndPoints(index_io,
tmp_epo_code,
src_image_block,
numEntries,
CMP_STATIC_CAST(CGU_INT8, EncodeState->clusters), // Mi_
EncodeState->bits,
EncodeState->channels3or4,
u_BC7Encode);
for (CGU_INT k = 0; k < MAX_SUBSET_SIZE; k++)
{
storedBestindex[sortedBlockPartition][subset][k] = index_io[k];
}
for (CGU_INT ch = 0; ch < MAX_CHANNELS; ch++)
{
epo_code[(subset * 2 + 0) * 4 + ch] = tmp_epo_code[ch];
epo_code[(subset * 2 + 1) * 4 + ch] = tmp_epo_code[4 + ch];
}
}
//****************************************
// Check if result is better than the last
//****************************************
if (err_optimized < err_best)
{
bestPartition = sortedBlockPartition;
CGV_INT bestIndexCount = 0;
for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
{
CGV_INT numEntries = subset_entryCount[subset];
bestEntryCount[subset] = numEntries;
if (numEntries)
{
for (CGU_INT ch = 0; ch < EncodeState->channels3or4; ch++)
{
bestEndpoints[(subset * 2 + 0) * 4 + ch] = epo_code[(subset * 2 + 0) * 4 + ch];
bestEndpoints[(subset * 2 + 1) * 4 + ch] = epo_code[(subset * 2 + 1) * 4 + ch];
}
for (CGV_INT k = 0; k < numEntries; k++)
{
bestindex[subset * MAX_SUBSET_SIZE + k] = storedBestindex[sortedBlockPartition][subset][k];
bestindex16[bestIndexCount++] = storedBestindex[sortedBlockPartition][subset][k];
}
}
}
err_best = err_optimized;
// Early out if we found we can compress with error below the quality threshold
if (err_best <= u_BC7Encode->errorThreshold)
{
break;
}
}
}
if (blockMode != 7)
err_best += EncodeState->opaque_err;
if (err_best > EncodeState->best_err)
return;
//**************************
// Save the encoded block
//**************************
EncodeState->best_err = err_best;
// Now we have all the data needed to encode the block
// We need to pack the endpoints prior to encoding
CGV_UINT32 packedEndpoints[MAX_SUBSETS * 2] = {0, 0, 0, 0, 0, 0};
for (CGU_INT subset = 0; subset < EncodeState->maxSubSets; subset++)
{
packedEndpoints[(subset * 2) + 0] = 0;
packedEndpoints[(subset * 2) + 1] = 0;
if (bestEntryCount[subset])
{
CGU_UINT32 rightAlignment = 0;
// Sort out parity bits
if (blockMode != 2)
{
// Sort out BCC parity bits
packedEndpoints[(subset * 2) + 0] = bestEndpoints[(subset * 2 + 0) * 4 + 0] & 1;
packedEndpoints[(subset * 2) + 1] = bestEndpoints[(subset * 2 + 1) * 4 + 0] & 1;
for (CGU_INT ch = 0; ch < EncodeState->channels3or4; ch++)
{
bestEndpoints[(subset * 2 + 0) * 4 + ch] >>= 1;
bestEndpoints[(subset * 2 + 1) * 4 + ch] >>= 1;
}
rightAlignment++;
}
// Fixup endpoints
for (CGU_INT ch = 0; ch < EncodeState->channels3or4; ch++)
{
packedEndpoints[(subset * 2) + 0] |= bestEndpoints[((subset * 2) + 0) * 4 + ch] << rightAlignment;
packedEndpoints[(subset * 2) + 1] |= bestEndpoints[((subset * 2) + 1) * 4 + ch] << rightAlignment;
rightAlignment += EncodeState->componentBits;
}
}
}
CGV_UINT8 idxCount[3] = {0, 0, 0};
for (CGV_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
CGV_UINT8 partsub = get_partition_subset(bestPartition, EncodeState->maxSubSets, k);
CGV_UINT8 idxC = idxCount[partsub];
bestindex16[k] = bestindex[partsub * MAX_SUBSET_SIZE + idxC];
idxCount[partsub] = idxC + 1;
}
Encode_mode01237(blockMode, bestPartition, packedEndpoints, bestindex16, EncodeState->cmp_out);
}
void Compress_mode45(CGU_INT blockMode, BC7_EncodeState EncodeState[], CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[])
{
cmp_mode_parameters best_candidate;
EncodeState->channels3or4 = 4;
cmp_memsetBC7((CGV_UINT8*)&best_candidate, 0, sizeof(cmp_mode_parameters));
if (blockMode == 4)
{
EncodeState->max_idxMode = 2;
EncodeState->modeBits[0] = 30; // bits = 2 * (Red 5+ Grn 5+ blu 5)
EncodeState->modeBits[1] = 36; // bits = 2 * (Alpha 6+6+6)
EncodeState->numClusters0[0] = 4;
EncodeState->numClusters0[1] = 8;
EncodeState->numClusters1[0] = 8;
EncodeState->numClusters1[1] = 4;
}
else
{
EncodeState->max_idxMode = 1;
EncodeState->modeBits[0] = 42; // bits = 2 * (Red 7+ Grn 7+ blu 7)
EncodeState->modeBits[1] = 48; // bits = 2 * (Alpha 8+8+8) = 48
EncodeState->numClusters0[0] = 4;
EncodeState->numClusters0[1] = 4;
EncodeState->numClusters1[0] = 4;
EncodeState->numClusters1[1] = 4;
}
CGV_FLOAT src_color_Block[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
CGV_FLOAT src_alpha_Block[SOURCE_BLOCK_SIZE * MAX_CHANNELS];
// Go through each possible rotation and selection of index rotationBits)
for (CGU_UINT8 rotated_channel = 0; rotated_channel < EncodeState->channels3or4; rotated_channel++)
{
// A
for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
for (CGU_INT p = 0; p < 3; p++)
{
src_color_Block[k + p * SOURCE_BLOCK_SIZE] = EncodeState->image_src[k + componentRotations[rotated_channel][p + 1] * SOURCE_BLOCK_SIZE];
src_alpha_Block[k + p * SOURCE_BLOCK_SIZE] = EncodeState->image_src[k + componentRotations[rotated_channel][0] * SOURCE_BLOCK_SIZE];
}
}
CGV_FLOAT err_quantizer;
CGV_FLOAT err_bestQuantizer = CMP_FLOAT_MAX;
for (CGU_INT idxMode = 0; idxMode < EncodeState->max_idxMode; idxMode++)
{
// B
CGV_UINT32 color_index2[2]; // reserved .. Not used!
err_quantizer =
GetQuantizeIndex(color_index2, best_candidate.color_index, src_color_Block, SOURCE_BLOCK_SIZE, EncodeState->numClusters0[idxMode], 3);
err_quantizer +=
GetQuantizeIndex(color_index2, best_candidate.alpha_index, src_alpha_Block, SOURCE_BLOCK_SIZE, EncodeState->numClusters1[idxMode], 3) / 3.0F;
// If quality is high then run the full shaking for this config and
// store the result if it beats the best overall error
// Otherwise only run the shaking if the error is better than the best
// quantizer error
if (err_quantizer <= err_bestQuantizer)
{
err_bestQuantizer = err_quantizer;
// Shake size gives the size of the shake cube
CGV_FLOAT err_overallError;
err_overallError = optimize_IndexAndEndPoints(best_candidate.color_index,
best_candidate.color_qendpoint,
src_color_Block,
SOURCE_BLOCK_SIZE,
EncodeState->numClusters0[idxMode],
CMP_STATIC_CAST(CGU_UINT8, EncodeState->modeBits[0]),
3,
u_BC7Encode);
// Alpha scalar block
err_overallError += optimize_IndexAndEndPoints(best_candidate.alpha_index,
best_candidate.alpha_qendpoint,
src_alpha_Block,
SOURCE_BLOCK_SIZE,
EncodeState->numClusters1[idxMode],
CMP_STATIC_CAST(CGU_UINT8, EncodeState->modeBits[1]),
3,
u_BC7Encode) / 3.0f;
// If we beat the previous best then encode the block
if (err_overallError < EncodeState->best_err)
{
best_candidate.idxMode = idxMode;
best_candidate.rotated_channel = rotated_channel;
if (blockMode == 4)
Encode_mode4(EncodeState->cmp_out, &best_candidate);
else
Encode_mode5(EncodeState->cmp_out, &best_candidate);
EncodeState->best_err = err_overallError;
}
}
} // B
} // A
}
void Compress_mode6(BC7_EncodeState EncodeState[], CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[])
{
CGV_FLOAT err;
CGV_INT epo_code_out[8] = {0};
CGV_UINT8 best_index_out[MAX_SUBSET_SIZE];
CGV_UINT32 best_packedindex_out[2];
// CGV_FLOAT block_endpoints[8];
// icmp_get_block_endpoints(block_endpoints, EncodeState->image_src, -1, 4);
// icmp_GetQuantizedEpoCode(epo_code_out, block_endpoints, 6,4);
// err = icmp_GetQuantizeIndex(best_packedindex_out, best_index_out, EncodeState->image_src, 4, block_endpoints, 0,4);
err = GetQuantizeIndex(best_packedindex_out,
best_index_out,
EncodeState->image_src,
16, // numEntries
16, // clusters
4); // channels3or4
//*****************************
// Process the partition shape
//*****************************
err = optimize_IndexAndEndPoints(best_index_out,
epo_code_out,
EncodeState->image_src,
16, //numEntries
16, // Mi_ = clusters
58, // bits
4, // channels3or4
u_BC7Encode);
//**************************
// Save the encoded block
//**************************
if (err < EncodeState->best_err)
{
EncodeState->best_err = err;
Encode_mode6(best_index_out, epo_code_out, EncodeState->cmp_out);
}
}
void copy_BC7_Encode_settings(BC7_EncodeState EncodeState[], CMP_UNIFORM CMP_GLOBAL BC7_Encode settings[])
{
EncodeState->best_err = CMP_FLOAT_MAX;
EncodeState->validModeMask = settings->validModeMask;
#ifdef USE_ICMP
EncodeState->part_count = settings->part_count;
EncodeState->channels = settings->channels;
#endif
}
//===================================== COMPRESS CODE =============================================
#ifdef USE_ICMP
#include "external/bc7_icmp.h"
#endif
bool notValidBlockForMode(CGU_UINT32 blockMode, CGU_BOOL blockNeedsAlpha, CGU_BOOL blockAlphaZeroOne, CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[])
{
// Do we need to skip alpha processing blocks
if ((blockNeedsAlpha == FALSE) && (blockMode > 3))
{
return TRUE;
}
// Optional restriction for colour-only blocks so that they
// don't use modes that have combined colour+alpha - this
// avoids the possibility that the encoder might choose an
// alpha other than 1.0 (due to parity) and cause something to
// become accidentally slightly transparent (it's possible that
// when encoding 3-component texture applications will assume that
// the 4th component can safely be assumed to be 1.0 all the time)
if ((blockNeedsAlpha == FALSE) && (u_BC7Encode->colourRestrict == TRUE) && ((blockMode == 6) || (blockMode == 7)))
{ // COMBINED_ALPHA
return TRUE;
}
// Optional restriction for blocks with alpha to avoid issues with
// punch-through or thresholded alpha encoding
if ((blockNeedsAlpha == TRUE) && (u_BC7Encode->alphaRestrict == TRUE) && (blockAlphaZeroOne == TRUE) && ((blockMode == 6) || (blockMode == 7)))
{ // COMBINED_ALPHA
return TRUE;
}
return FALSE;
}
void BC7_CompressBlock(BC7_EncodeState EncodeState[], CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[])
{
#ifdef USE_NEW_SINGLE_HEADER_INTERFACES
CGV_Vec4f image_src[16];
//int px = 0;
for (int i = 0; i < 16; i++)
{
image_src[i].x = EncodeState->image_src[i];
image_src[i].y = EncodeState->image_src[i + 16];
image_src[i].z = EncodeState->image_src[i + 32];
image_src[i].w = EncodeState->image_src[i + 48];
}
CGU_Vec4ui cmp = CompressBlockBC7_UNORM(image_src, u_BC7Encode->quality);
//EncodeState->cmp_isout16Bytes = true;
//EncodeState->cmp_out[0] = cmp.x & 0xFF;
//EncodeState->cmp_out[1] = (cmp.x >> 8) & 0xFF;
//EncodeState->cmp_out[2] = (cmp.x >> 16) & 0xFF;
//EncodeState->cmp_out[3] = (cmp.x >> 24) & 0xFF;
//EncodeState->cmp_out[4] = cmp.y & 0xFF;
//EncodeState->cmp_out[5] = (cmp.y >> 8) & 0xFF;
//EncodeState->cmp_out[6] = (cmp.y >> 16) & 0xFF;
//EncodeState->cmp_out[7] = (cmp.y >> 24) & 0xFF;
//EncodeState->cmp_out[8] = cmp.z & 0xFF;
//EncodeState->cmp_out[9] = (cmp.z >> 8) & 0xFF;
//EncodeState->cmp_out[10] = (cmp.z >> 16) & 0xFF;
//EncodeState->cmp_out[11] = (cmp.z >> 24) & 0xFF;
//EncodeState->cmp_out[12] = cmp.w & 0xFF;
//EncodeState->cmp_out[13] = (cmp.w >> 8) & 0xFF;
//EncodeState->cmp_out[14] = (cmp.w >> 16) & 0xFF;
//EncodeState->cmp_out[15] = (cmp.w >> 24) & 0xFF;
EncodeState->cmp_isout16Bytes = false;
EncodeState->best_cmp_out[0] = cmp.x;
EncodeState->best_cmp_out[1] = cmp.y;
EncodeState->best_cmp_out[2] = cmp.z;
EncodeState->best_cmp_out[3] = cmp.w;
return;
#else
CGU_BOOL blockNeedsAlpha = FALSE;
CGU_BOOL blockAlphaZeroOne = FALSE;
CGV_FLOAT alpha_err = 0.0f;
CGV_FLOAT alpha_min = 255.0F;
for (CGU_INT k = 0; k < SOURCE_BLOCK_SIZE; k++)
{
if (EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] < alpha_min)
alpha_min = EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE];
alpha_err += sq_image(EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] - 255.0F);
if (blockAlphaZeroOne == FALSE)
{
if ((EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] == 255.0F) || (EncodeState->image_src[k + COMP_ALPHA * SOURCE_BLOCK_SIZE] == 0.0F))
{
blockAlphaZeroOne = TRUE;
}
}
}
if (alpha_min != 255.0F)
{
blockNeedsAlpha = TRUE;
}
EncodeState->best_err = CMP_FLOAT_MAX;
EncodeState->opaque_err = alpha_err;
#ifdef USE_ICMP
EncodeState->refineIterations = 4;
EncodeState->fastSkipTreshold = 4;
EncodeState->channels = 4;
EncodeState->part_count = 64;
EncodeState->cmp_isout16Bytes = FALSE;
#else
EncodeState->cmp_isout16Bytes = TRUE;
#endif
// We change the order in which we visit the block modes to try to maximize the chance
// that we manage to early out as quickly as possible.
// This is a significant performance optimization for the lower quality modes where the
// exit threshold is higher, and also tends to improve quality (as the generally higher quality
// modes are now enumerated earlier, so the first encoding that passes the threshold will
// tend to pass by a greater margin than if we used a dumb ordering, and thus overall error will
// be improved)
CGU_INT blockModeOrder[NUM_BLOCK_TYPES] = {4, 6, 1, 3, 0, 2, 7, 5};
// used for debugging and mode tests
// 76543210
// u_BC7Encode->validModeMask = 0b01000000;
for (CGU_INT block = 0; block < NUM_BLOCK_TYPES; block++)
{
CGU_INT blockMode = blockModeOrder[block];
if (u_BC7Encode->quality < BC7_qFAST_THRESHOLD)
{
if (notValidBlockForMode(blockMode, blockNeedsAlpha, blockAlphaZeroOne, u_BC7Encode))
continue;
}
CGU_INT Mode = 0x0001 << blockMode;
if (!(u_BC7Encode->validModeMask & Mode))
continue;
switch (blockMode)
{
// image processing with no alpha
case 0:
#ifdef USE_ICMP
icmp_mode02(EncodeState);
#else
Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
#endif
break;
case 1:
#ifdef USE_ICMP
icmp_mode13(EncodeState);
#else
Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
#endif
break;
case 2:
#ifdef USE_ICMP
icmp_mode13(EncodeState);
#else
Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
#endif
break;
case 3:
#ifdef USE_ICMP
icmp_mode13(EncodeState);
#else
Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
#endif
break;
// image processing with alpha
case 4:
#ifdef USE_ICMP
icmp_mode4(EncodeState);
#else
Compress_mode45(blockMode, EncodeState, u_BC7Encode);
#endif
break;
case 5:
#ifdef USE_ICMP
icmp_mode5(EncodeState);
#else
Compress_mode45(blockMode, EncodeState, u_BC7Encode);
#endif
break;
case 6:
#ifdef USE_ICMP
icmp_mode6(EncodeState);
#else
Compress_mode6(EncodeState, u_BC7Encode);
#endif
break;
case 7:
#ifdef USE_ICMP
icmp_mode7(EncodeState);
#else
Compress_mode01237(blockMode, EncodeState, u_BC7Encode);
#endif
break;
}
// Early out if we found we can compress with error below the quality threshold
if (EncodeState->best_err <= u_BC7Encode->errorThreshold)
{
break;
}
}
#endif
}
//====================================== BC7_ENCODECLASS END =============================================
#ifndef ASPM_GPU
INLINE void load_block_interleaved_rgba2(CGV_FLOAT image_src[64], CMP_UNIFORM texture_surface* CMP_UNIFORM src, CGV_INT block_xx, CGU_INT block_yy)
{
for (CGU_INT y = 0; y < 4; y++)
for (CGU_INT x = 0; x < 4; x++)
{
CGU_UINT32* CMP_UNIFORM src_ptr = (CGV_UINT32*)&src->ptr[(block_yy * 4 + y) * src->stride];
#ifdef USE_VARYING
CGV_UINT32 rgba = gather_partid(src_ptr, block_xx * 4 + x);
image_src[16 * 0 + y * 4 + x] = (CGV_FLOAT)((rgba >> 0) & 255);
image_src[16 * 1 + y * 4 + x] = (CGV_FLOAT)((rgba >> 8) & 255);
image_src[16 * 2 + y * 4 + x] = (CGV_FLOAT)((rgba >> 16) & 255);
image_src[16 * 3 + y * 4 + x] = (CGV_FLOAT)((rgba >> 24) & 255);
#else
CGV_UINT32 rgba = src_ptr[block_xx * 4 + x];
image_src[16 * 0 + y * 4 + x] = (CGU_FLOAT)((rgba >> 0) & 255);
image_src[16 * 1 + y * 4 + x] = (CGU_FLOAT)((rgba >> 8) & 255);
image_src[16 * 2 + y * 4 + x] = (CGU_FLOAT)((rgba >> 16) & 255);
image_src[16 * 3 + y * 4 + x] = (CGU_FLOAT)((rgba >> 24) & 255);
#endif
}
}
#if defined(CMP_USE_FOREACH_ASPM) || defined(USE_VARYING)
INLINE void scatter_uint2(CGU_UINT32* ptr, CGV_INT idx, CGV_UINT32 value)
{
ptr[idx] = value; // (perf warning expected)
}
#endif
INLINE void store_data_uint32(CGU_UINT8 dst[], CGU_INT width, CGV_INT v_xx, CGU_INT yy, CGV_UINT32 data[], CGU_INT data_size)
{
for (CGU_INT k = 0; k < data_size; k++)
{
CGU_UINT32* dst_ptr = (CGV_UINT32*)&dst[(yy)*width * data_size];
#ifdef USE_VARYING
scatter_uint2(dst_ptr, v_xx * data_size + k, data[k]);
#else
dst_ptr[v_xx * data_size + k] = data[k];
#endif
}
}
#ifdef USE_VARYING
INLINE void scatter_uint8(CGU_UINT8* ptr, CGV_UINT32 idx, CGV_UINT8 value)
{
ptr[idx] = value; // (perf warning expected)
}
#endif
INLINE void store_data_uint8(CGU_UINT8 u_dstptr[], CGU_INT src_width, CGU_INT block_x, CGU_INT block_y, CGV_UINT8 data[], CGU_INT data_size)
{
for (CGU_INT k = 0; k < data_size; k++)
{
#ifdef USE_VARYING
CGU_UINT8* dst_blockptr = (CGU_UINT8*)&u_dstptr[(block_y * src_width * 4)];
scatter_uint8(dst_blockptr, k + (block_x * data_size), data[k]);
#else
u_dstptr[(block_y * src_width * 4) + k + (block_x * data_size)] = data[k];
#endif
}
}
INLINE void store_data_uint32(CGU_UINT8 dst[], CGV_UINT32 width, CGU_INT v_xx, CGU_INT yy, CGV_UINT8 data[], CGU_INT data_size)
{
for (CGU_INT k = 0; k < data_size; k++)
{
#if defined(CMP_USE_FOREACH_ASPM) || defined(USE_VARYING)
CGU_UINT32* dst_ptr = (CGV_UINT32*)&dst[(yy)*width * data_size];
scatter_uint2(dst_ptr, v_xx * data_size + k, data[k]);
#else
dst[((yy)*width * data_size) + v_xx * data_size + k] = data[k];
#endif
}
}
void CompressBlockBC7_XY(CMP_UNIFORM texture_surface u_srcptr[], CGU_INT block_x, CGU_INT block_y, CGU_UINT8 u_dst[], CMP_UNIFORM BC7_Encode u_settings[])
{
BC7_EncodeState _state;
varying BC7_EncodeState* CMP_UNIFORM state = &_state;
copy_BC7_Encode_settings(state, u_settings);
load_block_interleaved_rgba2(state->image_src, u_srcptr, block_x, block_y);
BC7_CompressBlock(state, u_settings);
if (state->cmp_isout16Bytes)
store_data_uint8(u_dst, u_srcptr->width, block_x, block_y, state->cmp_out, 16);
else
store_data_uint32(u_dst, u_srcptr->width, block_x, block_y, state->best_cmp_out, 4);
}
CMP_EXPORT void CompressBlockBC7_encode(CMP_UNIFORM texture_surface src[], CGU_UINT8 dst[], CMP_UNIFORM BC7_Encode settings[])
{
// bc7_isa(); ASPM_PRINT(("ASPM encode [%d,%d]\n",bc7_isa(),src->width,src->height));
for (CGU_INT u_yy = 0; u_yy < src->height / 4; u_yy++)
#ifdef CMP_USE_FOREACH_ASPM
foreach (v_xx = 0 ... src->width / 4)
{
#else
for (CGV_INT v_xx = 0; v_xx < src->width / 4; v_xx++)
{
#endif
CompressBlockBC7_XY(src, v_xx, u_yy, dst, settings);
}
}
#endif
#ifndef ASPM_GPU
#ifndef ASPM
//======================= DECOMPRESS =========================================
#ifndef USE_HIGH_PRECISION_INTERPOLATION_BC7
CGU_UINT16 aWeight2[] = {0, 21, 43, 64};
CGU_UINT16 aWeight3[] = {0, 9, 18, 27, 37, 46, 55, 64};
CGU_UINT16 aWeight4[] = {0, 4, 9, 13, 17, 21, 26, 30, 34, 38, 43, 47, 51, 55, 60, 64};
CGU_UINT8 interpolate(CGU_UINT8 e0, CGU_UINT8 e1, CGU_UINT8 index, CGU_UINT8 indexprecision)
{
if (indexprecision == 2)
return (CGU_UINT8)(((64 - aWeight2[index]) * CGU_UINT16(e0) + aWeight2[index] * CGU_UINT16(e1) + 32) >> 6);
else if (indexprecision == 3)
return (CGU_UINT8)(((64 - aWeight3[index]) * CGU_UINT16(e0) + aWeight3[index] * CGU_UINT16(e1) + 32) >> 6);
else // indexprecision == 4
return (CGU_UINT8)(((64 - aWeight4[index]) * CGU_UINT16(e0) + aWeight4[index] * CGU_UINT16(e1) + 32) >> 6);
}
#endif
void GetBC7Ramp(CGU_UINT32 endpoint[][MAX_DIMENSION_BIG],
CGU_FLOAT ramp[MAX_DIMENSION_BIG][(1 << MAX_INDEX_BITS)],
CGU_UINT32 clusters[2],
CGU_UINT32 componentBits[MAX_DIMENSION_BIG])
{
CGU_UINT32 ep[2][MAX_DIMENSION_BIG];
CGU_UINT32 i;
// Expand each endpoint component to 8 bits by shifting the MSB to bit 7
// and then replicating the high bits to the low bits revealed by
// the shift
for (i = 0; i < MAX_DIMENSION_BIG; i++)
{
ep[0][i] = 0;
ep[1][i] = 0;
if (componentBits[i])
{
ep[0][i] = (CGU_UINT32)(endpoint[0][i] << (8 - componentBits[i]));
ep[1][i] = (CGU_UINT32)(endpoint[1][i] << (8 - componentBits[i]));
ep[0][i] += (CGU_UINT32)(ep[0][i] >> componentBits[i]);
ep[1][i] += (CGU_UINT32)(ep[1][i] >> componentBits[i]);
ep[0][i] = min8(255, max8(0, CMP_STATIC_CAST(CGU_UINT8, ep[0][i])));
ep[1][i] = min8(255, max8(0, CMP_STATIC_CAST(CGU_UINT8, ep[1][i])));
}
}
// If this block type has no explicit alpha channel
// then make sure alpha is 1.0 for all points on the ramp
if (!componentBits[COMP_ALPHA])
{
ep[0][COMP_ALPHA] = ep[1][COMP_ALPHA] = 255;
}
CGU_UINT32 rampIndex = clusters[0];
rampIndex = (CGU_UINT32)(log((double)rampIndex) / log(2.0));
// Generate colours for the RGB ramp
for (i = 0; i < clusters[0]; i++)
{
#ifdef USE_HIGH_PRECISION_INTERPOLATION_BC7
ramp[COMP_RED][i] =
(CGU_FLOAT)cmp_floor((ep[0][COMP_RED] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_RED] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
ramp[COMP_RED][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_RED][i]));
ramp[COMP_GREEN][i] =
(CGU_FLOAT)cmp_floor((ep[0][COMP_GREEN] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_GREEN] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
ramp[COMP_GREEN][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_GREEN][i]));
ramp[COMP_BLUE][i] =
(CGU_FLOAT)cmp_floor((ep[0][COMP_BLUE] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_BLUE] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
ramp[COMP_BLUE][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_BLUE][i]));
#else
ramp[COMP_RED][i] = interpolate(ep[0][COMP_RED], ep[1][COMP_RED], i, rampIndex);
ramp[COMP_GREEN][i] = interpolate(ep[0][COMP_GREEN], ep[1][COMP_GREEN], i, rampIndex);
ramp[COMP_BLUE][i] = interpolate(ep[0][COMP_BLUE], ep[1][COMP_BLUE], i, rampIndex);
#endif
}
rampIndex = clusters[1];
rampIndex = (CGU_UINT32)(log((CGU_FLOAT)rampIndex) / log(2.0));
if (!componentBits[COMP_ALPHA])
{
for (i = 0; i < clusters[1]; i++)
{
ramp[COMP_ALPHA][i] = 255.;
}
}
else
{
// Generate alphas
for (i = 0; i < clusters[1]; i++)
{
#ifdef USE_HIGH_PRECISION_INTERPOLATION_BC7
ramp[COMP_ALPHA][i] =
(CGU_FLOAT)cmp_floor((ep[0][COMP_ALPHA] * (1.0 - rampLerpWeightsBC7[rampIndex][i])) + (ep[1][COMP_ALPHA] * rampLerpWeightsBC7[rampIndex][i]) + 0.5);
ramp[COMP_ALPHA][i] = bc7_minf(255.0, bc7_maxf(0., ramp[COMP_ALPHA][i]));
#else
ramp[COMP_ALPHA][i] = interpolate(ep[0][COMP_ALPHA], ep[1][COMP_ALPHA], i, rampIndex);
#endif
}
}
}
//
// Bit reader - reads one bit from a buffer at the current bit offset
// and increments the offset
//
CGU_UINT32 ReadBit(const CGU_UINT8 base[], CGU_UINT32& m_bitPosition)
{
int byteLocation;
int remainder;
CGU_UINT32 bit = 0;
byteLocation = m_bitPosition / 8;
remainder = m_bitPosition % 8;
bit = base[byteLocation];
bit >>= remainder;
bit &= 0x1;
// Increment bit position
m_bitPosition++;
return (bit);
}
void DecompressDualIndexBlock(CGU_UINT8 out[MAX_SUBSET_SIZE][MAX_DIMENSION_BIG],
const CGU_UINT8 in[COMPRESSED_BLOCK_SIZE],
CGU_UINT32 endpoint[2][MAX_DIMENSION_BIG],
CGU_UINT32& m_bitPosition,
CGU_UINT32 m_rotation,
CGU_UINT32 m_blockMode,
CGU_UINT32 m_indexSwap,
CGU_UINT32 m_componentBits[MAX_DIMENSION_BIG])
{
CGU_UINT32 i, j, k;
CGU_FLOAT ramp[MAX_DIMENSION_BIG][1 << MAX_INDEX_BITS];
CGU_UINT32 blockIndices[2][MAX_SUBSET_SIZE];
CGU_UINT32 clusters[2];
clusters[0] = 1 << bti[m_blockMode].indexBits[0];
clusters[1] = 1 << bti[m_blockMode].indexBits[1];
if (m_indexSwap)
{
CGU_UINT32 temp = clusters[0];
clusters[0] = clusters[1];
clusters[1] = temp;
}
GetBC7Ramp(endpoint, ramp, clusters, m_componentBits);
// Extract the indices
for (i = 0; i < 2; i++)
{
for (j = 0; j < MAX_SUBSET_SIZE; j++)
{
blockIndices[i][j] = 0;
// If this is a fixup index then clear the implicit bit
if (j == 0)
{
blockIndices[i][j] &= ~(1 << (bti[m_blockMode].indexBits[i] - 1U));
for (k = 0; k < static_cast<CGU_UINT32>(bti[m_blockMode].indexBits[i] - 1); k++)
{
blockIndices[i][j] |= (CGU_UINT32)ReadBit(in, m_bitPosition) << k;
}
}
else
{
for (k = 0; k < bti[m_blockMode].indexBits[i]; k++)
{
blockIndices[i][j] |= (CGU_UINT32)ReadBit(in, m_bitPosition) << k;
}
}
}
}
// Generate block colours
for (i = 0; i < MAX_SUBSET_SIZE; i++)
{
out[i][COMP_ALPHA] = (CGU_UINT8)ramp[COMP_ALPHA][blockIndices[m_indexSwap ^ 1][i]];
out[i][COMP_RED] = (CGU_UINT8)ramp[COMP_RED][blockIndices[m_indexSwap][i]];
out[i][COMP_GREEN] = (CGU_UINT8)ramp[COMP_GREEN][blockIndices[m_indexSwap][i]];
out[i][COMP_BLUE] = (CGU_UINT8)ramp[COMP_BLUE][blockIndices[m_indexSwap][i]];
}
// Resolve the component rotation
CGU_INT8 swap;
for (i = 0; i < MAX_SUBSET_SIZE; i++)
{
switch (m_rotation)
{
case 0:
// Do nothing
break;
case 1:
// Swap A and R
swap = out[i][COMP_ALPHA];
out[i][COMP_ALPHA] = out[i][COMP_RED];
out[i][COMP_RED] = swap;
break;
case 2:
// Swap A and G
swap = out[i][COMP_ALPHA];
out[i][COMP_ALPHA] = out[i][COMP_GREEN];
out[i][COMP_GREEN] = swap;
break;
case 3:
// Swap A and B
swap = out[i][COMP_ALPHA];
out[i][COMP_ALPHA] = out[i][COMP_BLUE];
out[i][COMP_BLUE] = swap;
break;
}
}
}
void DecompressBC7_internal(CGU_UINT8 out[MAX_SUBSET_SIZE][MAX_DIMENSION_BIG], const CGU_UINT8 in[COMPRESSED_BLOCK_SIZE], const BC7_Encode* u_BC7Encode)
{
if (u_BC7Encode)
{
}
CGU_UINT32 i, j;
CGU_UINT32 blockIndices[MAX_SUBSET_SIZE];
CGU_UINT32 endpoint[MAX_SUBSETS][2][MAX_DIMENSION_BIG];
CGU_UINT32 m_blockMode;
CGU_UINT32 m_partition;
CGU_UINT32 m_rotation;
CGU_UINT32 m_indexSwap;
CGU_UINT32 m_bitPosition;
CGU_UINT32 m_componentBits[MAX_DIMENSION_BIG];
m_blockMode = 0;
m_partition = 0;
m_rotation = 0;
m_indexSwap = 0;
// Position the read pointer at the LSB of the block
m_bitPosition = 0;
while (!ReadBit(in, m_bitPosition) && (m_blockMode < 8))
{
m_blockMode++;
}
if (m_blockMode > 7)
{
// Something really bad happened...
return;
}
for (i = 0; i < bti[m_blockMode].rotationBits; i++)
{
m_rotation |= ReadBit(in, m_bitPosition) << i;
}
for (i = 0; i < bti[m_blockMode].indexModeBits; i++)
{
m_indexSwap |= ReadBit(in, m_bitPosition) << i;
}
for (i = 0; i < bti[m_blockMode].partitionBits; i++)
{
m_partition |= ReadBit(in, m_bitPosition) << i;
}
if (bti[m_blockMode].encodingType == NO_ALPHA)
{
m_componentBits[COMP_ALPHA] = 0;
m_componentBits[COMP_RED] = m_componentBits[COMP_GREEN] = m_componentBits[COMP_BLUE] = bti[m_blockMode].vectorBits / 3;
}
else if (bti[m_blockMode].encodingType == COMBINED_ALPHA)
{
m_componentBits[COMP_ALPHA] = m_componentBits[COMP_RED] = m_componentBits[COMP_GREEN] = m_componentBits[COMP_BLUE] = bti[m_blockMode].vectorBits / 4;
}
else if (bti[m_blockMode].encodingType == SEPARATE_ALPHA)
{
m_componentBits[COMP_ALPHA] = bti[m_blockMode].scalarBits;
m_componentBits[COMP_RED] = m_componentBits[COMP_GREEN] = m_componentBits[COMP_BLUE] = bti[m_blockMode].vectorBits / 3;
}
CGU_UINT32 subset, ep, component;
// Endpoints are stored in the following order RRRR GGGG BBBB (AAAA) (PPPP)
// i.e. components are packed together
// Loop over components
for (component = 0; component < MAX_DIMENSION_BIG; component++)
{
// loop over subsets
for (subset = 0; subset < (int)bti[m_blockMode].subsetCount; subset++)
{
// Loop over endpoints
for (ep = 0; ep < 2; ep++)
{
endpoint[subset][ep][component] = 0;
for (j = 0; j < m_componentBits[component]; j++)
{
endpoint[subset][ep][component] |= ReadBit(in, m_bitPosition) << j;
}
}
}
}
// Now get any parity bits
if (bti[m_blockMode].pBitType != NO_PBIT)
{
for (subset = 0; subset < (int)bti[m_blockMode].subsetCount; subset++)
{
CGU_UINT32 pBit[2];
if (bti[m_blockMode].pBitType == ONE_PBIT)
{
pBit[0] = ReadBit(in, m_bitPosition);
pBit[1] = pBit[0];
}
else if (bti[m_blockMode].pBitType == TWO_PBIT)
{
pBit[0] = ReadBit(in, m_bitPosition);
pBit[1] = ReadBit(in, m_bitPosition);
}
for (component = 0; component < MAX_DIMENSION_BIG; component++)
{
if (m_componentBits[component])
{
endpoint[subset][0][component] <<= 1;
endpoint[subset][1][component] <<= 1;
endpoint[subset][0][component] |= pBit[0];
endpoint[subset][1][component] |= pBit[1];
}
}
}
}
if (bti[m_blockMode].pBitType != NO_PBIT)
{
// Now that we've unpacked the parity bits, update the component size information
// for the ramp generator
for (j = 0; j < MAX_DIMENSION_BIG; j++)
{
if (m_componentBits[j])
{
m_componentBits[j] += 1;
}
}
}
// If this block has two independent sets of indices then put it to that decoder
if (bti[m_blockMode].encodingType == SEPARATE_ALPHA)
{
DecompressDualIndexBlock(out, in, endpoint[0], m_bitPosition, m_rotation, m_blockMode, m_indexSwap, m_componentBits);
return;
}
CGU_UINT32 fixup[MAX_SUBSETS] = {0, 0, 0};
switch (bti[m_blockMode].subsetCount)
{
case 3:
fixup[1] = BC7_FIXUPINDICES_LOCAL[2][m_partition][1];
fixup[2] = BC7_FIXUPINDICES_LOCAL[2][m_partition][2];
break;
case 2:
fixup[1] = BC7_FIXUPINDICES_LOCAL[1][m_partition][1];
break;
default:
break;
}
//--------------------------------------------------------------------
// New Code : Possible replacement for BC7_PARTITIONS for CPU code
//--------------------------------------------------------------------
// Extract index bits
// for (i = 0; i < MAX_SUBSET_SIZE; i++)
// {
// CGV_UINT8 p = get_partition_subset(m_partition, bti[m_blockMode].subsetCount - 1, i);
// //CGU_UINT32 p = partitionTable[i];
// blockIndices[i] = 0;
// CGU_UINT32 bitsToRead = bti[m_blockMode].indexBits[0];
//
// // If this is a fixup index then set the implicit bit
// if (i == fixup[p])
// {
// blockIndices[i] &= ~(1 << (bitsToRead - 1));
// bitsToRead--;
// }
//
// for (j = 0; j < bitsToRead; j++)
// {
// blockIndices[i] |= ReadBit(in, m_bitPosition) << j;
// }
// }
CGU_UINT8* partitionTable = (CGU_UINT8*)BC7_PARTITIONS[bti[m_blockMode].subsetCount - 1][m_partition];
// Extract index bits
for (i = 0; i < MAX_SUBSET_SIZE; i++)
{
CGU_UINT8 p = partitionTable[i];
blockIndices[i] = 0;
CGU_UINT8 bitsToRead = bti[m_blockMode].indexBits[0];
// If this is a fixup index then set the implicit bit
if (i == fixup[p])
{
blockIndices[i] &= ~(1 << (bitsToRead - 1));
bitsToRead--;
}
for (j = 0; j < bitsToRead; j++)
{
blockIndices[i] |= ReadBit(in, m_bitPosition) << j;
}
}
// Get the ramps
CGU_UINT32 clusters[2];
clusters[0] = clusters[1] = 1 << bti[m_blockMode].indexBits[0];
// Colour Ramps
CGU_FLOAT c[MAX_SUBSETS][MAX_DIMENSION_BIG][1 << MAX_INDEX_BITS];
for (i = 0; i < (int)bti[m_blockMode].subsetCount; i++)
{
// Unpack the colours
GetBC7Ramp(endpoint[i], c[i], clusters, m_componentBits);
}
//--------------------------------------------------------------------
// New Code : Possible replacement for BC7_PARTITIONS for CPU code
//--------------------------------------------------------------------
// Generate the block colours.
// for (i = 0; i < MAX_SUBSET_SIZE; i++)
// {
// CGV_UINT8 p = get_partition_subset(m_partition, bti[m_blockMode].subsetCount - 1, i);
// out[i][0] = c[p][0][blockIndices[i]];
// out[i][1] = c[p][1][blockIndices[i]];
// out[i][2] = c[p][2][blockIndices[i]];
// out[i][3] = c[p][3][blockIndices[i]];
// }
// Generate the block colours.
for (i = 0; i < MAX_SUBSET_SIZE; i++)
{
for (j = 0; j < MAX_DIMENSION_BIG; j++)
{
out[i][j] = (CGU_UINT8)c[partitionTable[i]][j][blockIndices[i]];
}
}
}
void CompressBlockBC7_Internal(CGU_UINT8 image_src[SOURCE_BLOCK_SIZE][4],
CMP_GLOBAL CGV_UINT8 cmp_out[COMPRESSED_BLOCK_SIZE],
CMP_UNIFORM CMP_GLOBAL BC7_Encode u_BC7Encode[])
{
BC7_EncodeState _state = {0};
varying BC7_EncodeState* CMP_UNIFORM state = &_state;
copy_BC7_Encode_settings(state, u_BC7Encode);
CGU_UINT8 offsetR = 0;
CGU_UINT8 offsetG = 16;
CGU_UINT8 offsetB = 32;
CGU_UINT8 offsetA = 48;
for (CGU_UINT8 i = 0; i < SOURCE_BLOCK_SIZE; i++)
{
state->image_src[offsetR++] = (CGV_FLOAT)image_src[i][0];
state->image_src[offsetG++] = (CGV_FLOAT)image_src[i][1];
state->image_src[offsetB++] = (CGV_FLOAT)image_src[i][2];
state->image_src[offsetA++] = (CGV_FLOAT)image_src[i][3];
}
BC7_CompressBlock(state, u_BC7Encode);
if (state->cmp_isout16Bytes)
{
for (CGU_UINT8 i = 0; i < COMPRESSED_BLOCK_SIZE; i++)
{
cmp_out[i] = state->cmp_out[i];
}
}
else
{
#ifdef ASPM_GPU
cmp_memcpy(cmp_out, (CGU_UINT8*)state->best_cmp_out, 16);
#else
memcpy(cmp_out, state->best_cmp_out, 16);
#endif
}
}
//======================= CPU USER INTERFACES ====================================
int CMP_CDECL CreateOptionsBC7(void** options)
{
(*options) = new BC7_Encode;
if (!options)
return CGU_CORE_ERR_NEWMEM;
init_BC7ramps();
SetDefaultBC7Options((BC7_Encode*)(*options));
return CGU_CORE_OK;
}
int CMP_CDECL DestroyOptionsBC7(void* options)
{
if (!options)
return CGU_CORE_ERR_INVALIDPTR;
BC7_Encode* BCOptions = reinterpret_cast<BC7_Encode*>(options);
delete BCOptions;
return CGU_CORE_OK;
}
int CMP_CDECL SetErrorThresholdBC7(void* options, CGU_FLOAT minThreshold, CGU_FLOAT maxThreshold)
{
if (!options)
return CGU_CORE_ERR_INVALIDPTR;
BC7_Encode* BC7optionsDefault = (BC7_Encode*)options;
if (minThreshold < 0.0f)
minThreshold = 0.0f;
if (maxThreshold < 0.0f)
maxThreshold = 0.0f;
BC7optionsDefault->minThreshold = minThreshold;
BC7optionsDefault->maxThreshold = maxThreshold;
return CGU_CORE_OK;
}
int CMP_CDECL SetQualityBC7(void* options, CGU_FLOAT fquality)
{
if (!options)
return CGU_CORE_ERR_INVALIDPTR;
BC7_Encode* BC7optionsDefault = (BC7_Encode*)options;
if (fquality < 0.0f)
fquality = 0.0f;
else if (fquality > 1.0f)
fquality = 1.0f;
BC7optionsDefault->quality = fquality;
// Set Error Thresholds
BC7optionsDefault->errorThreshold = BC7optionsDefault->maxThreshold * (1.0f - fquality);
if (fquality > BC7_qFAST_THRESHOLD)
BC7optionsDefault->errorThreshold += BC7optionsDefault->minThreshold;
return CGU_CORE_OK;
}
int CMP_CDECL SetMaskBC7(void* options, CGU_UINT8 mask)
{
if (!options)
return CGU_CORE_ERR_INVALIDPTR;
BC7_Encode* BC7options = (BC7_Encode*)options;
BC7options->validModeMask = mask;
return CGU_CORE_OK;
}
int CMP_CDECL SetAlphaOptionsBC7(void* options, CGU_BOOL imageNeedsAlpha, CGU_BOOL colourRestrict, CGU_BOOL alphaRestrict)
{
if (!options)
return CGU_CORE_ERR_INVALIDPTR;
BC7_Encode* u_BC7Encode = (BC7_Encode*)options;
u_BC7Encode->imageNeedsAlpha = imageNeedsAlpha;
u_BC7Encode->colourRestrict = colourRestrict;
u_BC7Encode->alphaRestrict = alphaRestrict;
return CGU_CORE_OK;
}
int CMP_CDECL CompressBlockBC7(const unsigned char* srcBlock, unsigned int srcStrideInBytes, CMP_GLOBAL unsigned char cmpBlock[16], const void* options = NULL)
{
CMP_Vec4uc inBlock[SOURCE_BLOCK_SIZE];
//----------------------------------
// Fill the inBlock with source data
//----------------------------------
CGU_INT srcpos = 0;
CGU_INT dstptr = 0;
for (CGU_UINT8 row = 0; row < 4; row++)
{
srcpos = row * srcStrideInBytes;
for (CGU_UINT8 col = 0; col < 4; col++)
{
inBlock[dstptr].x = CGU_UINT8(srcBlock[srcpos++]);
inBlock[dstptr].y = CGU_UINT8(srcBlock[srcpos++]);
inBlock[dstptr].z = CGU_UINT8(srcBlock[srcpos++]);
inBlock[dstptr].w = CGU_UINT8(srcBlock[srcpos++]);
dstptr++;
}
}
BC7_Encode* u_BC7Encode = (BC7_Encode*)options;
BC7_Encode BC7EncodeDefault = {0};
if (u_BC7Encode == NULL)
{
u_BC7Encode = &BC7EncodeDefault;
SetDefaultBC7Options(u_BC7Encode);
init_BC7ramps();
}
BC7_EncodeState EncodeState
#ifndef ASPM
= { 0 }
#endif
;
EncodeState.best_err = CMP_FLOAT_MAX;
EncodeState.validModeMask = u_BC7Encode->validModeMask;
EncodeState.part_count = u_BC7Encode->part_count;
EncodeState.channels = CMP_STATIC_CAST(CGU_UINT8, u_BC7Encode->channels);
CGU_UINT8 offsetR = 0;
CGU_UINT8 offsetG = 16;
CGU_UINT8 offsetB = 32;
CGU_UINT8 offsetA = 48;
CGU_UINT32 offsetSRC = 0;
for (CGU_UINT8 i = 0; i < SOURCE_BLOCK_SIZE; i++)
{
EncodeState.image_src[offsetR++] = (CGV_FLOAT)inBlock[offsetSRC].x;
EncodeState.image_src[offsetG++] = (CGV_FLOAT)inBlock[offsetSRC].y;
EncodeState.image_src[offsetB++] = (CGV_FLOAT)inBlock[offsetSRC].z;
EncodeState.image_src[offsetA++] = (CGV_FLOAT)inBlock[offsetSRC].w;
offsetSRC++;
}
BC7_CompressBlock(&EncodeState, u_BC7Encode);
if (EncodeState.cmp_isout16Bytes)
{
for (CGU_UINT8 i = 0; i < COMPRESSED_BLOCK_SIZE; i++)
{
cmpBlock[i] = EncodeState.cmp_out[i];
}
}
else
{
memcpy(cmpBlock, EncodeState.best_cmp_out, 16);
}
return CGU_CORE_OK;
}
int CMP_CDECL DecompressBlockBC7(const unsigned char cmpBlock[16], unsigned char srcBlock[64], const void* options = NULL)
{
BC7_Encode* u_BC7Encode = (BC7_Encode*)options;
BC7_Encode BC7EncodeDefault = {0}; // for q = 0.05
if (u_BC7Encode == NULL)
{
// set for q = 1.0
u_BC7Encode = &BC7EncodeDefault;
SetDefaultBC7Options(u_BC7Encode);
init_BC7ramps();
}
DecompressBC7_internal((CGU_UINT8(*)[4])srcBlock, (CGU_UINT8*)cmpBlock, u_BC7Encode);
return CGU_CORE_OK;
}
#endif
#endif
//============================================== OpenCL USER INTERFACE ====================================================
#ifdef ASPM_OPENCL
CMP_STATIC CMP_KERNEL void CMP_GPUEncoder(CMP_UNIFORM CMP_GLOBAL const CGU_Vec4uc ImageSource[],
CMP_GLOBAL CGV_UINT8 ImageDestination[],
CMP_UNIFORM CMP_GLOBAL Source_Info SourceInfo[],
CMP_UNIFORM CMP_GLOBAL BC7_Encode BC7Encode[])
{
CGU_INT xID = 0;
CGU_INT yID = 0;
xID = get_global_id(0); // ToDo: Define a size_t 32 bit and 64 bit based on clGetDeviceInfo
yID = get_global_id(1);
CGU_INT srcWidth = SourceInfo->m_src_width;
CGU_INT srcHeight = SourceInfo->m_src_height;
if (xID >= (srcWidth / BlockX))
return;
if (yID >= (srcHeight / BlockY))
return;
//ASPM_PRINT(("[ASPM_OCL] %d %d size %d\n",xID,yID,sizeof(BC7_Encode)));
CGU_INT destI = (xID * COMPRESSED_BLOCK_SIZE) + (yID * (srcWidth / BlockX) * COMPRESSED_BLOCK_SIZE);
CGU_INT srcindex = 4 * (yID * srcWidth + xID);
CGU_INT blkindex = 0;
BC7_EncodeState EncodeState;
cmp_memsetBC7((CGV_UINT8*)&EncodeState, 0, sizeof(EncodeState));
copy_BC7_Encode_settings(&EncodeState, BC7Encode);
//Check if it is a complete 4X4 block
if (((xID + 1) * BlockX <= srcWidth) && ((yID + 1) * BlockY <= srcHeight))
{
srcWidth = srcWidth - 4;
for (CGU_INT j = 0; j < 4; j++)
{
for (CGU_INT i = 0; i < 4; i++)
{
EncodeState.image_src[blkindex + 0 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].x;
EncodeState.image_src[blkindex + 1 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].y;
EncodeState.image_src[blkindex + 2 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].z;
EncodeState.image_src[blkindex + 3 * SOURCE_BLOCK_SIZE] = ImageSource[srcindex].w;
blkindex++;
srcindex++;
}
srcindex += srcWidth;
}
BC7_CompressBlock(&EncodeState, BC7Encode);
//printf("CMP %x %x %x %x %x %x %x %x\n",
// EncodeState.cmp_out[0],
// EncodeState.cmp_out[1],
// EncodeState.cmp_out[2],
// EncodeState.cmp_out[3],
// EncodeState.cmp_out[4],
// EncodeState.cmp_out[5],
// EncodeState.cmp_out[6],
// EncodeState.cmp_out[7]
// );
for (CGU_INT i = 0; i < COMPRESSED_BLOCK_SIZE; i++)
{
ImageDestination[destI + i] = EncodeState.cmp_out[i];
}
}
else
{
ASPM_PRINT(("[ASPM_GPU] Unable to process, make sure image size is divisible by 4"));
}
}
#endif