ULRE/src/SceneGraph/InlineGeometry.cpp

1158 lines
42 KiB
C++
Raw Normal View History

2019-05-24 19:28:27 +08:00
#include<hgl/graph/InlineGeometry.h>
#include<hgl/graph/VertexBuffer.h>
#include<hgl/graph/vulkan/VKDevice.h>
#include<hgl/graph/vulkan/VKShaderModule.h>
#include<hgl/graph/SceneDB.h>
2019-05-24 19:28:27 +08:00
namespace hgl
{
namespace graph
{
2019-06-17 20:25:44 +08:00
namespace
2019-05-24 19:28:27 +08:00
{
2019-06-17 20:25:44 +08:00
template<typename VERTEX_VB_FORMAT>
struct GeometryCreater
{
SceneDB *db;
vulkan::Material *mtl;
const vulkan::VertexShaderModule *vsm=nullptr;
vulkan::Renderable *render_obj=nullptr;
int vertex_binding =-1;
int color_binding =-1;
int normal_binding =-1;
int tangent_binding =-1;
int texcoord_binding=-1;
VERTEX_VB_FORMAT *vertex =nullptr;
VB4f *color =nullptr;
VB3f *normal =nullptr;
VB3f *tangent =nullptr;
VB2f *tex_coord =nullptr;
vulkan::IndexBuffer *ibo=nullptr;
public:
GeometryCreater(SceneDB *sdb,vulkan::Material *m):db(sdb),mtl(m)
{
vsm=mtl->GetVertexShaderModule();
vertex_binding =vsm->GetStageInputBinding("Vertex");
color_binding =vsm->GetStageInputBinding("Color");
normal_binding =vsm->GetStageInputBinding("Normal");
tangent_binding =vsm->GetStageInputBinding("Tangent");
texcoord_binding=vsm->GetStageInputBinding("TexCoord");
}
~GeometryCreater()
{
if(render_obj)
delete render_obj;
}
bool Init(uint vertices_number)
{
if(vertex_binding==-1)return(false);
if(!vertices_number)return(false);
render_obj=mtl->CreateRenderable(vertices_number);
vertex =new VERTEX_VB_FORMAT(vertices_number);
if(color_binding !=-1)color =new VB4f(vertices_number);
if(normal_binding !=-1)normal =new VB3f(vertices_number);
if(tangent_binding !=-1)tangent =new VB3f(vertices_number);
if(texcoord_binding !=-1)tex_coord =new VB2f(vertices_number);
return(true);
}
void WriteVertex (const float *v){if(vertex )vertex ->BufferData(v);}
void WriteColor (const float *v){if(color )color ->BufferData(v);}
void WriteNormal (const float *v){if(normal )normal ->BufferData(v);}
void WriteTangent (const float *v){if(tangent )tangent ->BufferData(v);}
void WriteTexCoord (const float *v){if(tex_coord )tex_coord ->BufferData(v);}
VERTEX_VB_FORMAT *GetVertex (){if(vertex )vertex ->Begin();return vertex;}
VB4f *GetColor (){if(color )color ->Begin();return color;}
VB3f *GetNormal (){if(normal )normal ->Begin();return normal;}
VB3f *GetTangent (){if(tangent )tangent ->Begin();return tangent;}
VB2f *GetTexCoord (){if(tex_coord )tex_coord ->Begin();return tex_coord;}
float *GetVertexPointer (){return vertex ?(float *)vertex ->Begin():nullptr;}
float *GetColorPointer (){return color ?(float *)color ->Begin():nullptr;}
float *GetNormalPointer (){return normal ?(float *)normal ->Begin():nullptr;}
float *GetTangentPointer (){return tangent ?(float *)tangent ->Begin():nullptr;}
float *GetTexCoordPointer (){return tex_coord ?(float *)tex_coord ->Begin():nullptr;}
uint16 *CreateIBO16(uint count,const uint16 *data=nullptr)
{
ibo=db->CreateIBO16(count,data);
return (uint16 *)ibo->Map();
}
uint32 *CreateIBO32(uint count,const uint32 *data=nullptr)
{
ibo=db->CreateIBO32(count,data);
return (uint32 *)ibo->Map();
}
private:
void Finish(int binding,VertexBufferCreater *vb)
{
render_obj->Set(binding,db->CreateVBO(vb));
delete vb;
}
public:
vulkan::Renderable *Finish()
{
if(vertex)
{
render_obj->SetBoundingBox(vertex->GetAABB());
Finish(vertex_binding,vertex);
}
if(color)Finish(color_binding,color);
if(normal)Finish(normal_binding,normal);
if(tangent)Finish(tangent_binding,tangent);
if(tex_coord)Finish(texcoord_binding,tex_coord);
if(ibo)
{
ibo->Unmap();
render_obj->Set(ibo);
}
vulkan::Renderable *result=render_obj;
db->Add(render_obj);
render_obj=nullptr;
return result;
}
};//struct GeometryCreater
using GeometryCreater3D=GeometryCreater<VB3f>;
using GeometryCreater2D=GeometryCreater<VB2f>;
}//namespace
2019-05-24 19:28:27 +08:00
2019-06-17 23:51:17 +08:00
vulkan::Renderable *CreateRenderableRectangle(SceneDB *db,vulkan::Material *mtl,const RectangleCreateInfo *rci)
2019-06-17 20:25:44 +08:00
{
GeometryCreater2D gc(db,mtl);
2019-05-24 19:28:27 +08:00
2019-06-17 20:25:44 +08:00
if(!gc.Init(4))
2019-05-24 19:46:46 +08:00
return(nullptr);
2019-06-17 20:25:44 +08:00
VB2f *vertex=gc.GetVertex();
2019-05-24 19:28:27 +08:00
2019-05-24 19:46:46 +08:00
vertex->WriteRectFan(rci->scope);
2019-05-24 19:28:27 +08:00
2019-06-17 20:25:44 +08:00
return gc.Finish();
2019-05-24 19:28:27 +08:00
}
2019-06-17 23:51:17 +08:00
vulkan::Renderable *CreateRenderableRoundRectangle(SceneDB *db,vulkan::Material *mtl,const RoundRectangleCreateInfo *rci)
2019-05-24 19:28:27 +08:00
{
2019-06-17 20:25:44 +08:00
GeometryCreater2D gc(db,mtl);
2019-05-24 19:28:27 +08:00
2019-06-17 20:25:44 +08:00
if(rci->radius==0||rci->round_per<=1) //这是要画矩形
2019-05-24 19:28:27 +08:00
{
2019-06-17 20:25:44 +08:00
if(!gc.Init(4))
return(nullptr);
VB2f *vertex=gc.GetVertex();
2019-05-24 19:28:27 +08:00
vertex->WriteRectFan(rci->scope);
}
else
{
float radius=rci->radius;
if(radius>rci->scope.GetWidth()/2.0f)radius=rci->scope.GetWidth()/2.0f;
if(radius>rci->scope.GetHeight()/2.0f)radius=rci->scope.GetHeight()/2.0f;
2019-06-17 20:25:44 +08:00
if(!gc.Init(rci->round_per*4))
return(nullptr);
VB2f *vertex=gc.GetVertex();
2019-05-24 19:28:27 +08:00
vec2<float> *coord=new vec2<float>[rci->round_per];
2019-05-27 14:18:44 +08:00
float l=rci->scope.GetLeft(),
r=rci->scope.GetRight(),
t=rci->scope.GetTop(),
b=rci->scope.GetBottom();
2019-05-24 19:28:27 +08:00
for(uint i=0;i<rci->round_per;i++)
{
float ang=float(i)/float(rci->round_per-1)*90.0f;
float x=sin(hgl_ang2rad(ang))*radius;
float y=cos(hgl_ang2rad(ang))*radius;
coord[i].x=x;
coord[i].y=y;
//右上角
2019-05-27 14:18:44 +08:00
vertex->Write(r-radius+x,
t+radius-y);
2019-05-24 19:28:27 +08:00
}
//右下角
for(uint i=0;i<rci->round_per;i++)
{
2019-05-27 14:18:44 +08:00
vertex->Write(r-radius+coord[rci->round_per-1-i].x,
b-radius+coord[rci->round_per-1-i].y);
2019-05-24 19:28:27 +08:00
}
//左下角
for(uint i=0;i<rci->round_per;i++)
{
2019-05-27 14:18:44 +08:00
vertex->Write(l+radius-coord[i].x,
b-radius+coord[i].y);
2019-05-24 19:28:27 +08:00
}
//左上角
for(uint i=0;i<rci->round_per;i++)
{
2019-05-27 14:18:44 +08:00
vertex->Write(l+radius-coord[rci->round_per-1-i].x,
t+radius-coord[rci->round_per-1-i].y);
2019-05-24 19:28:27 +08:00
}
delete[] coord;
}
2019-06-17 20:25:44 +08:00
return gc.Finish();
2019-05-24 19:46:46 +08:00
}
2019-06-17 23:51:17 +08:00
vulkan::Renderable *CreateRenderableCircle(SceneDB *db,vulkan::Material *mtl,const CircleCreateInfo *cci)
2019-06-17 20:25:44 +08:00
{
GeometryCreater2D gc(db,mtl);
2019-05-24 19:46:46 +08:00
2019-06-17 20:25:44 +08:00
if(!gc.Init(cci->field_count+2))
2019-05-24 19:46:46 +08:00
return(nullptr);
2019-06-17 20:25:44 +08:00
VB2f *vertex=gc.GetVertex();
2019-05-24 19:46:46 +08:00
vertex->Write(cci->center.x,cci->center.y);
for(uint i=0;i<=cci->field_count;i++)
{
float ang=float(i)/float(cci->field_count)*360.0f;
float x=cci->center.x+sin(hgl_ang2rad(ang))*cci->radius.x;
float y=cci->center.y+cos(hgl_ang2rad(ang))*cci->radius.y;
vertex->Write(x,y);
}
2019-06-17 20:25:44 +08:00
return gc.Finish();
2019-05-24 19:28:27 +08:00
}
2019-05-27 22:48:01 +08:00
2019-06-17 23:51:17 +08:00
vulkan::Renderable *CreateRenderablePlaneGrid(SceneDB *db,vulkan::Material *mtl,const PlaneGridCreateInfo *pgci)
2019-05-27 22:48:01 +08:00
{
2019-06-17 20:25:44 +08:00
GeometryCreater3D gc(db,mtl);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
if(!gc.Init(((pgci->step.u+1)+(pgci->step.v+1))*2))
2019-05-27 22:48:01 +08:00
return(nullptr);
2019-06-17 20:25:44 +08:00
VB3f *vertex=gc.GetVertex();
for(uint row=0;row<=pgci->step.u;row++)
2019-05-27 22:48:01 +08:00
{
float pos=float(row)/float(pgci->step.u);
vertex->WriteLine( to(pgci->coord[0],pgci->coord[1],pos),
to(pgci->coord[3],pgci->coord[2],pos));
}
for(uint col=0;col<=pgci->step.v;col++)
2019-05-27 22:48:01 +08:00
{
float pos=float(col)/float(pgci->step.v);
vertex->WriteLine(to(pgci->coord[1],pgci->coord[2],pos),
to(pgci->coord[0],pgci->coord[3],pos));
}
2019-06-17 20:25:44 +08:00
VB4f *color=gc.GetColor();
if(color)
{
2019-06-17 20:25:44 +08:00
for(uint row=0;row<=pgci->step.u;row++)
{
if((row%pgci->side_step.u)==0)
color->Fill(pgci->side_color,2);
else
color->Fill(pgci->color,2);
}
2019-06-17 20:25:44 +08:00
for(uint col=0;col<=pgci->step.v;col++)
{
if((col%pgci->side_step.v)==0)
color->Fill(pgci->side_color,2);
else
color->Fill(pgci->color,2);
}
}
2019-06-17 20:25:44 +08:00
return gc.Finish();
2019-05-27 22:48:01 +08:00
}
2019-06-17 23:51:17 +08:00
vulkan::Renderable *CreateRenderablePlane(SceneDB *db,vulkan::Material *mtl,const PlaneCreateInfo *pci)
2019-05-27 22:48:01 +08:00
{
const float xy_vertices [] = { -0.5f,-0.5f,0.0f, +0.5f,-0.5f,0.0f, -0.5f,+0.5f,0.0f, +0.5f,+0.5f,0.0f};
float xy_tex_coord[] = { 0.0f, 0.0f, 1.0f,0.0f, 0.0f,1.0f, 1.0f, 1.0f};
const Vector3f xy_normal(0.0f,0.0f,1.0f);
const Vector3f xy_tangent(1.0f,0.0f,0.0f);
2019-06-17 20:25:44 +08:00
GeometryCreater3D gc(db,mtl);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
if(!gc.Init(4))
return(nullptr);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
gc.WriteVertex(xy_vertices);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
{
VB3f *normal=gc.GetNormal();
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
if(normal)normal->Fill(xy_normal,4);
2019-05-27 22:48:01 +08:00
}
{
2019-06-17 20:25:44 +08:00
VB3f *tangent=gc.GetTangent();
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
tangent->Fill(xy_tangent,4);
}
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
{
VB2f *tex_coord=gc.GetTexCoord();
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
if(tex_coord)
2019-05-27 22:48:01 +08:00
{
xy_tex_coord[2]=xy_tex_coord[6]=pci->tile.x;
xy_tex_coord[5]=xy_tex_coord[7]=pci->tile.y;
2019-06-17 20:25:44 +08:00
tex_coord->BufferData(xy_tex_coord);
2019-05-27 22:48:01 +08:00
}
}
2019-06-17 20:25:44 +08:00
return gc.Finish();
2019-05-27 22:48:01 +08:00
}
2019-06-17 23:51:17 +08:00
vulkan::Renderable *CreateRenderableCube(SceneDB *db,vulkan::Material *mtl,const CubeCreateInfo *cci)
2019-05-27 22:48:01 +08:00
{ // Points of a cube.
/* 4 5 */ const float points[]={ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, +0.5f, -0.5f, -0.5f, -0.5f, +0.5f, -0.5f, -0.5f, +0.5f, +0.5f,
/* *------------* */ +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f,
/* /| /| */ -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f,
/* 0/ | 1/ | */ -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f };
/* *--+---------* | */ // Normals of a cube.
/* | | | | */ const float normals[]={ +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f,
/* | 7| | 6| */ +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f,
/* | *---------+--* */ +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f,
/* | / | / */ -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f };
/* |/ 2|/ */ // The associated indices.
/* 3*------------* */ const uint16 indices[]={ 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 };
const float tangents[] = { +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f,
+1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
+1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f,
0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f };
float tex_coords[] ={ 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f };
2019-06-17 20:25:44 +08:00
GeometryCreater3D gc(db,mtl);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
if(!gc.Init(24))
return(nullptr);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
gc.WriteVertex(points);
gc.WriteNormal(normals);
gc.WriteTangent(tangents);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
VB2f *tc_vb=gc.GetTexCoord();
if(tc_vb)
2019-05-27 22:48:01 +08:00
{
float *tc=tex_coords;
for(uint i=0;i<24;i++)
{
(*tc)*=cci->tile.x;++tc;
(*tc)*=cci->tile.y;++tc;
}
2019-06-17 20:25:44 +08:00
tc_vb->BufferData(tex_coords);
2019-05-27 22:48:01 +08:00
}
2019-06-17 20:25:44 +08:00
gc.CreateIBO16(6*2*3,indices);
return gc.Finish();
2019-05-27 22:48:01 +08:00
}
2019-06-17 10:37:59 +08:00
2019-06-17 20:25:44 +08:00
template<typename T> void CreateSphereIndices(T *tp,uint numberParallels,const uint numberSlices)
2019-05-27 22:48:01 +08:00
{
2019-06-17 10:37:59 +08:00
for (uint i = 0; i < numberParallels; i++)
{
for (uint j = 0; j < numberSlices; j++)
{
*tp= i * (numberSlices + 1) + j; ++tp;
*tp=(i + 1) * (numberSlices + 1) + j; ++tp;
*tp=(i + 1) * (numberSlices + 1) + (j + 1); ++tp;
*tp= i * (numberSlices + 1) + j; ++tp;
*tp=(i + 1) * (numberSlices + 1) + (j + 1); ++tp;
*tp= i * (numberSlices + 1) + (j + 1); ++tp;
}
}
}
namespace
2019-06-17 20:25:44 +08:00
{
constexpr uint GLUS_VERTICES_FACTOR =4;
constexpr uint GLUS_VERTICES_DIVISOR=4;
constexpr uint GLUS_MAX_VERTICES =1048576;
constexpr uint GLUS_MAX_INDICES =GLUS_MAX_VERTICES*GLUS_VERTICES_FACTOR;
2019-06-17 10:37:59 +08:00
void glusQuaternionRotateRyf(float quaternion[4], const float angle)
{
float halfAngleRadian = hgl_ang2rad(angle) * 0.5f;
quaternion[0] = 0.0f;
quaternion[1] = sinf(halfAngleRadian);
quaternion[2] = 0.0f;
quaternion[3] = cosf(halfAngleRadian);
}
2019-06-17 20:25:44 +08:00
void glusQuaternionRotateRzf(float quaternion[4], const float angle)
{
float halfAngleRadian = hgl_ang2rad(angle) * 0.5f;
quaternion[0] = 0.0f;
quaternion[1] = 0.0f;
quaternion[2] = sinf(halfAngleRadian);
quaternion[3] = cosf(halfAngleRadian);
}
2019-06-17 10:37:59 +08:00
void glusQuaternionGetMatrix4x4f(float matrix[16], const float quaternion[4])
{
float x = quaternion[0];
float y = quaternion[1];
float z = quaternion[2];
float w = quaternion[3];
matrix[0] = 1.0f - 2.0f * y * y - 2.0f * z * z;
matrix[1] = 2.0f * x * y + 2.0f * w * z;
matrix[2] = 2.0f * x * z - 2.0f * w * y;
matrix[3] = 0.0f;
matrix[4] = 2.0f * x * y - 2.0f * w * z;
matrix[5] = 1.0f - 2.0f * x * x - 2.0f * z * z;
matrix[6] = 2.0f * y * z + 2.0f * w * x;
matrix[7] = 0.0f;
matrix[8] = 2.0f * x * z + 2.0f * w * y;
matrix[9] = 2.0f * y * z - 2.0f * w * x;
matrix[10] = 1.0f - 2.0f * x * x - 2.0f * y * y;
matrix[11] = 0.0f;
matrix[12] = 0.0f;
matrix[13] = 0.0f;
matrix[14] = 0.0f;
matrix[15] = 1.0f;
}
void glusMatrix4x4MultiplyVector3f(float result[3], const float matrix[16], const float vector[3])
{
int i;
2019-05-27 22:48:01 +08:00
2019-06-17 10:37:59 +08:00
float temp[3];
2019-05-27 22:48:01 +08:00
2019-06-17 10:37:59 +08:00
for (i = 0; i < 3; i++)
{
temp[i] = matrix[i] * vector[0] + matrix[4 + i] * vector[1] + matrix[8 + i] * vector[2];
}
for (i = 0; i < 3; i++)
{
result[i] = temp[i];
}
}
2019-06-17 20:25:44 +08:00
}//namespace
2019-06-17 10:37:59 +08:00
/**
* ,0,0,01
* @param numberSlices
* @return
*/
vulkan::Renderable *CreateRenderableSphere(SceneDB *db,vulkan::Material *mtl,const uint numberSlices)
2019-06-17 20:25:44 +08:00
{
GeometryCreater3D gc(db,mtl);
2019-06-17 10:37:59 +08:00
uint numberParallels = (numberSlices+1) / 2;
uint numberVertices = (numberParallels + 1) * (numberSlices + 1);
uint numberIndices = numberParallels * numberSlices * 6;
const double angleStep = double(2.0f * HGL_PI) / ((double) numberSlices);
// used later to help us calculating tangents vectors
float helpVector[3] = { 1.0f, 0.0f, 0.0f };
float helpQuaternion[4];
float helpMatrix[16];
float tex_x;
2019-06-17 20:25:44 +08:00
if(!gc.Init(numberVertices))
return(nullptr);
2019-06-17 10:37:59 +08:00
2019-06-17 20:25:44 +08:00
float *vp=gc.GetVertexPointer();
float *np=gc.GetNormalPointer();
float *tp=gc.GetTangentPointer();
float *tc=gc.GetTexCoordPointer();
2019-06-17 10:37:59 +08:00
for (uint i = 0; i < numberParallels + 1; i++)
2019-05-27 22:48:01 +08:00
{
2019-06-17 10:37:59 +08:00
for (uint j = 0; j < numberSlices + 1; j++)
{
float x=sin(angleStep * (double) i) * sin(angleStep * (double) j);
2019-06-17 20:25:44 +08:00
float y=sin(angleStep * (double) i) * cos(angleStep * (double) j);
float z=cos(angleStep * (double) i);
2019-06-17 10:37:59 +08:00
*vp=x;++vp;
*vp=y;++vp;
*vp=z;++vp;
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
if(np)
2019-06-17 10:37:59 +08:00
{
*np=x;++np;
*np=y;++np;
*np=z;++np;
}
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
if(tc)
2019-06-17 10:37:59 +08:00
{
tex_x=(float) j / (float) numberSlices;
2019-05-27 22:48:01 +08:00
2019-06-17 10:37:59 +08:00
*tc=tex_x;++tc;
*tc=1.0f - (float) i / (float) numberParallels;++tc;
2019-06-17 20:25:44 +08:00
if(tp)
2019-06-17 10:37:59 +08:00
{
// use quaternion to get the tangent vector
glusQuaternionRotateRyf(helpQuaternion, 360.0f * tex_x);
glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion);
glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector);
tp+=3;
}
}
}
}
2019-06-17 20:25:44 +08:00
if(numberVertices<=0xffff)
CreateSphereIndices<uint16>(gc.CreateIBO16(numberIndices),numberParallels,numberSlices);
else
CreateSphereIndices<uint32>(gc.CreateIBO32(numberIndices),numberParallels,numberSlices);
return gc.Finish();
}
vulkan::Renderable *CreateRenderableDome(SceneDB *db,vulkan::Material *mtl,const DomeCreateInfo *dci)
{
GeometryCreater3D gc(db,mtl);
uint i, j;
uint numberParallels = dci->numberSlices / 4;
uint numberVertices = (numberParallels + 1) * (dci->numberSlices + 1);
uint numberIndices = numberParallels * dci->numberSlices * 6;
float angleStep = (2.0f * HGL_PI) / ((float) dci->numberSlices);
// used later to help us calculating tangents vectors
float helpVector[3] = { 1.0f, 0.0f, 0.0f };
float helpQuaternion[4];
float helpMatrix[16];
float tex_x;
if (dci->numberSlices < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return nullptr;
if(!gc.Init(numberVertices))
return(nullptr);
float *vp=gc.GetVertexPointer();
float *np=gc.GetNormalPointer();
float *tp=gc.GetTangentPointer();
float *tc=gc.GetTexCoordPointer();
for (i = 0; i < numberParallels + 1; i++)
{
for (j = 0; j < dci->numberSlices + 1; j++)
{
uint vertexIndex = (i * (dci->numberSlices + 1) + j) * 4;
uint normalIndex = (i * (dci->numberSlices + 1) + j) * 3;
uint tangentIndex = (i * (dci->numberSlices + 1) + j) * 3;
uint texCoordsIndex = (i * (dci->numberSlices + 1) + j) * 2;
float x=dci->radius * sinf(angleStep * (float) i) * sinf(angleStep * (float) j);
float y=dci->radius * sinf(angleStep * (float) i) * cosf(angleStep * (float) j);
float z=dci->radius * cosf(angleStep * (float) i);
*vp=x;++vp;
*vp=y;++vp;
*vp=z;++vp;
if(np)
{
*np = x / dci->radius;++np;
*np = y / dci->radius;++np;
*np = z / dci->radius;++np;
}
if(tc)
{
*tc = tex_x=(float) j / (float) dci->numberSlices;++tc;
*tc = 1.0f - (float) i / (float) numberParallels;++tc;
if(tp)
{
// use quaternion to get the tangent vector
glusQuaternionRotateRyf(helpQuaternion, 360.0f * tex_x);
glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion);
glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector);
tp+=3;
}
}
}
}
if(numberVertices<=0xffff)
CreateSphereIndices<uint16>(gc.CreateIBO16(numberIndices),numberParallels,dci->numberSlices);
else
CreateSphereIndices<uint32>(gc.CreateIBO32(numberIndices),numberParallels,dci->numberSlices);
return gc.Finish();
}
namespace
{
template<typename T>
void CreateTorusIndices(T *tp,uint numberSlices,uint numberStacks)
{
// loop counters
uint sideCount, faceCount;
// used to generate the indices
uint v0, v1, v2, v3;
for (sideCount = 0; sideCount < numberSlices; ++sideCount)
{
for (faceCount = 0; faceCount < numberStacks; ++faceCount)
{
// get the number of the vertices for a face of the torus. They must be < numVertices
v0 = ((sideCount * (numberStacks + 1)) + faceCount);
v1 = (((sideCount + 1) * (numberStacks + 1)) + faceCount);
v2 = (((sideCount + 1) * (numberStacks + 1)) + (faceCount + 1));
v3 = ((sideCount * (numberStacks + 1)) + (faceCount + 1));
// first triangle of the face, counter clock wise winding
*tp = v0; ++tp;
*tp = v1; ++tp;
*tp = v2; ++tp;
// second triangle of the face, counter clock wise winding
*tp = v0; ++tp;
*tp = v2; ++tp;
*tp = v3; ++tp;
}
}
}
}//namespace
vulkan::Renderable *CreateRenderableTorus(SceneDB *db,vulkan::Material *mtl,TorusCreateInfo *tci)
{
GeometryCreater3D gc(db,mtl);
// s, t = parametric values of the equations, in the range [0,1]
float s = 0;
float t = 0;
// sIncr, tIncr are increment values aplied to s and t on each loop iteration to generate the torus
float sIncr;
float tIncr;
// to store precomputed sin and cos values
float cos2PIs, sin2PIs, cos2PIt, sin2PIt;
uint sideCount,faceCount;
uint numberVertices;
uint numberIndices;
// used later to help us calculating tangents vectors
float helpVector[3] = { 0.0f, 1.0f, 0.0f };
float helpQuaternion[4];
float helpMatrix[16];
float torusRadius = (tci->outerRadius - tci->innerRadius) / 2.0f;
float centerRadius = tci->outerRadius - torusRadius;
numberVertices = (tci->numberStacks + 1) * (tci->numberSlices + 1);
numberIndices = tci->numberStacks * tci->numberSlices * 2 * 3; // 2 triangles per face * 3 indices per triangle
2019-06-17 10:37:59 +08:00
2019-06-17 20:25:44 +08:00
if (tci->numberSlices < 3 || tci->numberStacks < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return(nullptr);
sIncr = 1.0f / (float) tci->numberSlices;
tIncr = 1.0f / (float) tci->numberStacks;
2019-06-17 10:37:59 +08:00
2019-06-17 20:25:44 +08:00
if(!gc.Init(numberVertices))
return(nullptr);
float *vp=gc.GetVertexPointer();
float *np=gc.GetNormalPointer();
float *tp=gc.GetTangentPointer();
float *tc=gc.GetTexCoordPointer();
2019-06-17 10:37:59 +08:00
2019-06-17 20:25:44 +08:00
// generate vertices and its attributes
for (sideCount = 0; sideCount <= tci->numberSlices; ++sideCount, s += sIncr)
2019-06-17 10:37:59 +08:00
{
2019-06-17 20:25:44 +08:00
// precompute some values
cos2PIs = (float) cosf(2.0f * HGL_PI * s);
sin2PIs = (float) sinf(2.0f * HGL_PI * s);
t = 0.0f;
for (faceCount = 0; faceCount <= tci->numberStacks; ++faceCount, t += tIncr)
{
// precompute some values
cos2PIt = (float) cosf(2.0f * HGL_PI * t);
sin2PIt = (float) sinf(2.0f * HGL_PI * t);
// generate vertex and stores it in the right position
*vp = (centerRadius + torusRadius * cos2PIt) * cos2PIs; ++vp;
*vp = (centerRadius + torusRadius * cos2PIt) * sin2PIs; ++vp;
*vp = torusRadius * sin2PIt; ++vp;
if(np)
{
// generate normal and stores it in the right position
// NOTE: cos (2PIx) = cos (x) and sin (2PIx) = sin (x) so, we can use this formula
// normal = {cos(2PIs)cos(2PIt) , sin(2PIs)cos(2PIt) ,sin(2PIt)}
*np = cos2PIs * cos2PIt; ++np;
*np = sin2PIs * cos2PIt; ++np;
*np = sin2PIt; ++np;
}
if(tc)
{
// generate texture coordinates and stores it in the right position
*tc = s; ++tc;
*tc = t; ++tc;
}
if(tp)
{
// use quaternion to get the tangent vector
glusQuaternionRotateRzf(helpQuaternion, 360.0f * s);
glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion);
2019-06-17 10:37:59 +08:00
2019-06-17 20:25:44 +08:00
glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector);
tp+=3;
}
}
2019-05-27 22:48:01 +08:00
}
2019-06-17 20:25:44 +08:00
if(numberVertices<=0xffff)
CreateTorusIndices<uint16>(gc.CreateIBO16(numberIndices),tci->numberSlices,tci->numberStacks);
else
CreateTorusIndices<uint32>(gc.CreateIBO32(numberIndices),tci->numberSlices,tci->numberStacks);
2019-05-27 22:48:01 +08:00
2019-06-17 20:25:44 +08:00
return gc.Finish();
2019-05-27 22:48:01 +08:00
}
2019-06-17 20:25:44 +08:00
namespace
{
template<typename T>
void CreateCylinderIndices(T *tp,const uint numberSlices)
{
uint i;
T centerIndex = 0;
T indexCounter = 1;
for (i = 0; i < numberSlices; i++)
{
*tp = centerIndex; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter; ++tp;
indexCounter++;
}
indexCounter++;
// Top
centerIndex = indexCounter;
indexCounter++;
for (i = 0; i < numberSlices; i++)
{
*tp = centerIndex; ++tp;
*tp = indexCounter; ++tp;
*tp = indexCounter + 1; ++tp;
indexCounter++;
}
indexCounter++;
// Sides
for (i = 0; i < numberSlices; i++)
{
*tp = indexCounter; ++tp;
*tp = indexCounter + 2; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter + 2; ++tp;
*tp = indexCounter + 3; ++tp;
*tp = indexCounter + 1; ++tp;
indexCounter += 2;
}
}
}//namespace
vulkan::Renderable *CreateRenderableCylinder(SceneDB *db,vulkan::Material *mtl,CylinderCreateInfo *cci)
{
uint numberIndices = cci->numberSlices * 3 * 2 + cci->numberSlices * 6;
if(numberIndices<=0)
return(nullptr);
GeometryCreater3D gc(db,mtl);
uint numberVertices = (cci->numberSlices + 2) * 2 + (cci->numberSlices + 1) * 2;
if(!gc.Init(numberVertices))
return(nullptr);
float angleStep = (2.0f * HGL_PI) / ((float) cci->numberSlices);
if (cci->numberSlices < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return nullptr;
float *vp=gc.GetVertexPointer();
float *np=gc.GetNormalPointer();
float *tp=gc.GetTangentPointer();
float *tc=gc.GetTexCoordPointer();
*vp = 0.0f; ++vp;
*vp = 0.0f; ++vp;
*vp = -cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np = -1.0f; ++np;
}
if(tp)
{
*tp = 0.0f; ++tp;
*tp = 1.0f; ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = 0.0f; ++tc;
*tc = 0.0f; ++tc;
}
for(uint i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
*vp = cosf(currentAngle) * cci->radius;++vp;
*vp = -sinf(currentAngle) * cci->radius;++vp;
*vp = -cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np = -1.0f; ++np;
}
if(tp)
{
*tp = sinf(currentAngle); ++tp;
*tp = cosf(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = 0.0f; ++tc;
*tc = 0.0f; ++tc;
}
}
*vp = 0.0f; ++vp;
*vp = 0.0f; ++vp;
*vp = cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np = 1.0f; ++np;
}
if(tp)
{
*tp = 0.0f; ++tp;
*tp = -1.0f; ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = 1.0f; ++tc;
*tc = 1.0f; ++tc;
}
for(uint i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
*vp = cosf(currentAngle) * cci->radius;++vp;
*vp = -sinf(currentAngle) * cci->radius;++vp;
*vp = cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np = 1.0f; ++np;
}
if(tp)
{
*tp = -sinf(currentAngle); ++tp;
*tp = -cosf(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = 1.0f; ++tc;
*tc = 1.0f; ++tc;
}
}
for(uint i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
float sign = -1.0f;
for (uint j = 0; j < 2; j++)
{
*vp = cosf(currentAngle) * cci->radius; ++vp;
*vp = -sinf(currentAngle) * cci->radius; ++vp;
*vp = cci->halfExtend * sign; ++vp;
if(np)
{
*np = cosf(currentAngle); ++np;
*np = -sinf(currentAngle); ++np;
*np = 0.0f; ++np;
}
if(tp)
{
*tp = -sinf(currentAngle); ++tp;
*tp = -cosf(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = (float)i / (float)cci->numberSlices; ++tc;
*tc = (sign + 1.0f) / 2.0f; ++tc;
}
sign = 1.0f;
}
}
if(numberVertices<=0xffff)
CreateCylinderIndices<uint16>(gc.CreateIBO16(numberIndices),cci->numberSlices);
else
CreateCylinderIndices<uint32>(gc.CreateIBO32(numberIndices),cci->numberSlices);
return gc.Finish();
}
namespace
{
template<typename T>
void CreateConeIndices(T *tp,const uint numberSlices,const uint numberStacks)
{
// Bottom
uint centerIndex = 0;
uint indexCounter = 1;
uint i,j;
for (i = 0; i < numberSlices; i++)
{
*tp = centerIndex; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter; ++tp;
indexCounter++;
}
indexCounter++;
// Sides
for (j = 0; j < numberStacks; j++)
{
for (i = 0; i < numberSlices; i++)
{
*tp = indexCounter; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter + numberSlices + 1; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter + numberSlices + 2; ++tp;
*tp = indexCounter + numberSlices + 1; ++tp;
indexCounter++;
}
indexCounter++;
}
}
}//namespace
vulkan::Renderable *CreateRenderableCone(SceneDB *db,vulkan::Material *mtl,ConeCreateInfo *cci)
{
GeometryCreater3D gc(db,mtl);
uint i, j;
uint numberVertices = (cci->numberSlices + 2) + (cci->numberSlices + 1) * (cci->numberStacks + 1);
if(!gc.Init(numberVertices))
return(nullptr);
uint numberIndices = cci->numberSlices * 3 + cci->numberSlices * 6 * cci->numberStacks;
float angleStep = (2.0f * HGL_PI) / ((float) cci->numberSlices);
float h = 2.0f * cci->halfExtend;
float r = cci->radius;
float l = sqrtf(h*h + r*r);
if (cci->numberSlices < 3 || cci->numberStacks < 1 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return nullptr;
float *vp=gc.GetVertexPointer();
float *np=gc.GetNormalPointer();
float *tp=gc.GetTangentPointer();
float *tc=gc.GetTexCoordPointer();
*vp = 0.0f; ++vp;
*vp = 0.0f; ++vp;
*vp = -cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f;++np;
*np = 0.0f;++np;
*np = -1.0f;++np;
}
if(tp)
{
*tp = 0.0f; ++tp;
*tp = 1.0f; ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = 0.0f; ++tc;
*tc = 0.0f; ++tc;
}
for (i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
*vp = cosf(currentAngle) * cci->radius;++vp;
*vp = -sinf(currentAngle) * cci->radius;++vp;
*vp = -cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f;++np;
*np = 0.0f;++np;
*np = -1.0f;++np;
}
if(tp)
{
*tp = sinf(currentAngle); ++tp;
*tp = cosf(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = 0.0f; ++tc;
*tc = 0.0f; ++tc;
}
}
for (j = 0; j < cci->numberStacks + 1; j++)
{
float level = (float)j / (float)cci->numberStacks;
for (i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
*vp = cosf(currentAngle) * cci->radius * (1.0f - level); ++vp;
*vp = -sinf(currentAngle) * cci->radius * (1.0f - level); ++vp;
*vp = -cci->halfExtend + 2.0f * cci->halfExtend * level; ++vp;
if(np)
{
*np = h / l * cosf(currentAngle); ++np;
*np = h / l * -sinf(currentAngle); ++np;
*np = r / l; ++np;
}
if(tp)
{
*tp = -sinf(currentAngle); ++tp;
*tp = -cosf(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tc)
{
*tc = (float)i / (float)cci->numberSlices; ++tc;
*tc = level; ++tc;
}
}
}
if(numberVertices<=0xffff)
CreateConeIndices<uint16>(gc.CreateIBO16(numberIndices),cci->numberSlices,cci->numberStacks);
else
CreateConeIndices<uint32>(gc.CreateIBO32(numberIndices),cci->numberSlices,cci->numberStacks);
return gc.Finish();
}
2019-05-24 19:28:27 +08:00
}//namespace graph
}//namespace hgl