ULRE/src/SceneGraph/InlineGeometry.cpp

1275 lines
49 KiB
C++
Raw Normal View History

2019-07-18 14:56:10 +08:00
// sphere、cylinear、cone、tours code from McNopper,website: https://github.com/McNopper/GLUS
// GL to VK: swap Y/Z of position/normal/tangent/index
#include<hgl/graph/InlineGeometry.h>
#include<hgl/graph/VertexAttribDataAccess.h>
#include<hgl/graph/VKDevice.h>
#include<hgl/graph/VKShaderModule.h>
#include<hgl/graph/PrimitiveCreater.h>
2019-05-24 19:28:27 +08:00
namespace hgl
{
namespace graph
{
namespace inline_geometry
2019-05-24 19:28:27 +08:00
{
Primitive *CreateRectangle(PrimitiveCreater *pc,const RectangleCreateInfo *rci)
{
if(!pc)return(nullptr);
if(!pc->Init("Rectangle",4,0))
return(nullptr);
VABMap2f vertex(pc,VAN::Position);
if(!vertex.IsValid())
return(nullptr);
vertex->WriteRectFan(rci->scope);
return pc->Create();
}
Primitive *CreateGBufferCompositionRectangle(PrimitiveCreater *pc)
{
RectangleCreateInfo rci;
rci.scope.Set(-1,-1,2,2);
2019-06-17 20:25:44 +08:00
return CreateRectangle(pc,&rci);
}
2019-06-17 20:25:44 +08:00
Primitive *CreateRoundRectangle(PrimitiveCreater *pc,const RoundRectangleCreateInfo *rci)
{
if(!pc)return(nullptr);
if(rci->radius==0||rci->round_per<=1) //这是要画矩形
{
if(!pc->Init("RoundRectangle",4,0))
return(nullptr);
VABMap2f vertex(pc,VAN::Position);
vertex->WriteRectFan(rci->scope);
}
else
{
float radius=rci->radius;
2020-07-09 20:37:34 +08:00
if(radius>rci->scope.GetWidth()/2.0f)radius=rci->scope.GetWidth()/2.0f;
if(radius>rci->scope.GetHeight()/2.0f)radius=rci->scope.GetHeight()/2.0f;
2020-07-09 20:37:34 +08:00
if(!pc->Init("RoundRectangle",rci->round_per*4,8))
return(nullptr);
VABMap2f vertex(pc,VAN::Position);
2019-06-17 20:25:44 +08:00
Vector2f *coord=new Vector2f[rci->round_per];
2019-06-17 20:25:44 +08:00
float l=rci->scope.GetLeft(),
r=rci->scope.GetRight(),
t=rci->scope.GetTop(),
b=rci->scope.GetBottom();
2019-06-17 20:25:44 +08:00
for(uint i=0;i<rci->round_per;i++)
{
float ang=float(i)/float(rci->round_per-1)*90.0f;
float x=sin(deg2rad(ang))*radius;
float y=cos(deg2rad(ang))*radius;
coord[i].x=x;
coord[i].y=y;
//右上角
vertex->Write(r-radius+x,
t+radius-y);
}
2020-07-09 20:37:34 +08:00
//右下角
for(uint i=0;i<rci->round_per;i++)
{
vertex->Write(r-radius+coord[rci->round_per-1-i].x,
b-radius+coord[rci->round_per-1-i].y);
}
2019-06-17 20:25:44 +08:00
//左下角
for(uint i=0;i<rci->round_per;i++)
{
vertex->Write(l+radius-coord[i].x,
b-radius+coord[i].y);
}
2019-06-17 20:25:44 +08:00
//左上角
for(uint i=0;i<rci->round_per;i++)
{
vertex->Write(l+radius-coord[rci->round_per-1-i].x,
t+radius-coord[rci->round_per-1-i].y);
}
delete[] coord;
}
return pc->Create();
}
Primitive *CreateCircle(PrimitiveCreater *pc,const CircleCreateInfo *cci)
2020-10-19 22:23:39 +08:00
{
if(!pc)return(nullptr);
uint edge;
uint vertex_count;
if(cci->has_color)
{
edge=cci->field_count+1;
vertex_count=cci->field_count+2;
}
else
{
edge=cci->field_count;
vertex_count=cci->field_count;
}
2020-10-19 22:23:39 +08:00
if(!pc->Init("Circle",vertex_count,0))return(nullptr);
VABMap2f vertex(pc,VAN::Position);
VABMap4f color(pc,VAN::Color);
if(!vertex.IsValid())
return(nullptr);
2020-10-19 22:23:39 +08:00
if(cci->has_color)
{
if(!color.IsValid())
return(nullptr);
2019-06-17 20:25:44 +08:00
vertex->Write(cci->center);
color->Write(cci->center_color);
}
for(uint i=0;i<edge;i++)
{
float ang=float(i)/float(cci->field_count)*360.0f;
float x=cci->center.x+sin(deg2rad(ang))*cci->radius.x;
float y=cci->center.y+cos(deg2rad(ang))*cci->radius.y;
vertex->Write(x,y);
if(cci->has_color)
color->Write(cci->border_color);
}
return pc->Create();
}
Primitive *CreatePlaneGrid(PrimitiveCreater *pc,const PlaneGridCreateInfo *pgci)
{
if(!pc->Init("PlaneGrid",((pgci->grid_size.Width()+1)+(pgci->grid_size.Height()+1))*2,0))
return(nullptr);
2019-06-17 20:25:44 +08:00
VABMap3f vertex(pc,VAN::Position);
2024-02-03 19:53:19 +08:00
const float right=float(pgci->grid_size.Width())/2.0f;
2023-09-29 02:59:10 +08:00
const float left =-right;
2024-02-03 19:53:19 +08:00
const float bottom=float(pgci->grid_size.Height())/2.0f;
2023-09-29 02:59:10 +08:00
const float top =-bottom;
2019-06-17 20:25:44 +08:00
2024-04-21 01:28:45 +08:00
for(uint row=0;row<=pgci->grid_size.Height();row++)
2019-06-17 20:25:44 +08:00
{
2023-09-29 02:59:10 +08:00
vertex->WriteLine( Vector3f(left ,top+row,0),
Vector3f(right,top+row,0));
}
2024-04-21 01:28:45 +08:00
for(uint col=0;col<=pgci->grid_size.Width();col++)
2023-09-29 02:59:10 +08:00
{
vertex->WriteLine(Vector3f(left+col,top, 0),
Vector3f(left+col,bottom,0));
}
VABMap1f lum(pc,VAN::Luminance);
if(lum.IsValid())
{
2024-04-21 01:28:45 +08:00
for(uint row=0;row<=pgci->grid_size.Height();row++)
{
2024-02-03 19:53:19 +08:00
if((row%pgci->sub_count.Height())==0)
2023-09-29 02:59:10 +08:00
lum->RepeatWrite(pgci->sub_lum,2);
else
lum->RepeatWrite(pgci->lum,2);
}
2019-06-17 20:25:44 +08:00
2024-04-21 01:28:45 +08:00
for(uint col=0;col<=pgci->grid_size.Width();col++)
{
2024-02-03 19:53:19 +08:00
if((col%pgci->sub_count.Width())==0)
2023-09-29 02:59:10 +08:00
lum->RepeatWrite(pgci->sub_lum,2);
else
lum->RepeatWrite(pgci->lum,2);
}
}
return pc->Create();
}
Primitive *CreatePlane(PrimitiveCreater *pc)
{
const float xy_vertices [] = { -0.5f,-0.5f,0.0f, +0.5f,-0.5f,0.0f, +0.5f,+0.5f,0.0f, -0.5f,+0.5f,0.0f };
float xy_tex_coord[] = { 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f };
const Vector3f xy_normal(0.0f,0.0f,1.0f);
const Vector3f xy_tangent(1.0f,0.0f,0.0f);
if(!pc)return(nullptr);
if(!pc->Init("Plane",4,8))
return(nullptr);
if(!pc->WriteVAB(VAN::Position,VF_V3F,xy_vertices))
return(nullptr);
2019-06-17 20:25:44 +08:00
{
VABMap3f normal(pc,VAN::Normal);
if(normal.IsValid())
normal->RepeatWrite(xy_normal,4);
2019-06-17 20:25:44 +08:00
}
{
VABMap3f tangent(pc,VAN::Tangent);
if(tangent.IsValid())
tangent->RepeatWrite(xy_tangent,4);
}
2020-09-27 20:58:25 +08:00
{
VABMap2f tex_coord(pc,VAN::TexCoord);
if(tex_coord.IsValid())
2023-10-13 19:21:04 +08:00
tex_coord->Write(xy_tex_coord,4);
}
return pc->Create();
2020-09-27 20:58:25 +08:00
}
Primitive *CreateCube(PrimitiveCreater *pc,const CubeCreateInfo *cci)
{
/**
* 4 5
* *------------* Z Y
* /| /| | Y | Z
* 0/ | 1/ | | / | /
* *--+---------* | | / | /
* | | | | | / | /
* | 7| | 6| |/ |/
* | *---------+--* *-----------X *-----------X
* | / | /
* |/ 2|/ my Cubemap
* 3*------------*
*
* cubemap纹理坐标系依然遵循OpenGL时代定下的坐标系position虽然使用vulkan坐标系shader中当做cubemap纹理坐标使用时shader中转换为opengl坐标系(yz即可)
*/
constexpr float positions[]={ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, +0.5f, -0.5f, -0.5f,
-0.5f, +0.5f, -0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f,
-0.5f, -0.5f, -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f,
-0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f, +0.5f,
-0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f,
+0.5f, -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f};
constexpr float normals[]={ +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f,
+0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f,
+0.0f, -0.0f, -1.0f, +0.0f, -0.0f, -1.0f, +0.0f, -0.0f, -1.0f, +0.0f, -0.0f, -1.0f,
+0.0f, -0.0f, +1.0f, +0.0f, -0.0f, +1.0f, +0.0f, -0.0f, +1.0f, +0.0f, -0.0f, +1.0f,
-1.0f, -0.0f, +0.0f, -1.0f, -0.0f, +0.0f, -1.0f, -0.0f, +0.0f, -1.0f, -0.0f, +0.0f,
+1.0f, -0.0f, +0.0f, +1.0f, -0.0f, +0.0f, +1.0f, -0.0f, +0.0f, +1.0f, -0.0f, +0.0f};
constexpr float tangents[] = { +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f,
+1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f,
+1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f,
0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f,
0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f};
constexpr float tex_coords[] ={ 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f};
// The associated indices.
constexpr uint16 indices[]={ 0, 2, 1, 0, 3, 2,
4, 5, 6, 4, 6, 7,
8, 9, 10, 8, 10, 11,
12, 15, 14, 12, 14, 13,
16, 17, 18, 16, 18, 19,
20, 23, 22, 20, 22, 21};
if(!pc)return(nullptr);
if(!pc->Init("Cube",24,6*2*3,IndexType::U16))
return(nullptr);
if(!pc->WriteVAB(VAN::Position,VF_V3F,positions))
return(nullptr);
if(cci->normal)
if(!pc->WriteVAB(VAN::Normal,VF_V3F,normals))
return(nullptr);
if(cci->tangent)
if(!pc->WriteVAB(VAN::Tangent,VF_V3F,tangents))
return(nullptr);
if(cci->tex_coord)
if(!pc->WriteVAB(VAN::TexCoord,VF_V2F,tex_coords))
return(nullptr);
if(cci->color_type!=CubeCreateInfo::ColorType::NoColor)
{
RANGE_CHECK_RETURN_NULLPTR(cci->color_type);
VABMap4f color(pc,VAN::Color);
if(color.IsValid())
{
if(cci->color_type==CubeCreateInfo::ColorType::SameColor)
color->RepeatWrite(cci->color[0],24);
else
if(cci->color_type==CubeCreateInfo::ColorType::FaceColor)
{
for(uint face=0;face<6;face++)
color->RepeatWrite(cci->color[face],4);
}
else
if(cci->color_type==CubeCreateInfo::ColorType::VertexColor)
color->Write(cci->color,24);
else
return(nullptr);
}
}
//pc->CreateIBO16(6*2*3,indices);
pc->WriteIBO(indices);
return pc->Create();
}
2024-05-23 14:00:23 +08:00
template<typename T>
void CreateSphereIndices(PrimitiveCreater *pc,uint numberParallels,const uint numberSlices)
{
2024-05-23 14:00:23 +08:00
IBMap<T> ib_map(pc);
T *tp=ib_map;
for (uint i = 0; i < numberParallels; i++)
{
for (uint j = 0; j < numberSlices; j++)
{
*tp= i * (numberSlices + 1) + j; ++tp;
*tp=(i + 1) * (numberSlices + 1) + (j + 1); ++tp;
*tp=(i + 1) * (numberSlices + 1) + j; ++tp;
*tp= i * (numberSlices + 1) + j; ++tp;
*tp= i * (numberSlices + 1) + (j + 1); ++tp;
*tp=(i + 1) * (numberSlices + 1) + (j + 1); ++tp;
}
}
}
namespace
{
constexpr uint GLUS_VERTICES_FACTOR =4;
constexpr uint GLUS_VERTICES_DIVISOR=4;
constexpr uint GLUS_MAX_VERTICES =1048576;
constexpr uint GLUS_MAX_INDICES =GLUS_MAX_VERTICES*GLUS_VERTICES_FACTOR;
void glusQuaternionRotateRyf(float quaternion[4], const float angle)
{
float halfAngleRadian = deg2rad(angle) * 0.5f;
quaternion[0] = 0.0f;
quaternion[1] = sin(halfAngleRadian);
quaternion[2] = 0.0f;
quaternion[3] = cos(halfAngleRadian);
}
void glusQuaternionRotateRzf(float quaternion[4], const float angle)
{
float halfAngleRadian = deg2rad(angle) * 0.5f;
quaternion[0] = 0.0f;
quaternion[1] = 0.0f;
quaternion[2] = sin(halfAngleRadian);
quaternion[3] = cos(halfAngleRadian);
}
void glusQuaternionGetMatrix4x4f(float matrix[16], const float quaternion[4])
{
float x = quaternion[0];
float y = quaternion[1];
float z = quaternion[2];
float w = quaternion[3];
matrix[0] = 1.0f - 2.0f * y * y - 2.0f * z * z;
matrix[1] = 2.0f * x * y + 2.0f * w * z;
matrix[2] = 2.0f * x * z - 2.0f * w * y;
matrix[3] = 0.0f;
matrix[4] = 2.0f * x * y - 2.0f * w * z;
matrix[5] = 1.0f - 2.0f * x * x - 2.0f * z * z;
matrix[6] = 2.0f * y * z + 2.0f * w * x;
matrix[7] = 0.0f;
matrix[8] = 2.0f * x * z + 2.0f * w * y;
matrix[9] = 2.0f * y * z - 2.0f * w * x;
matrix[10] = 1.0f - 2.0f * x * x - 2.0f * y * y;
matrix[11] = 0.0f;
matrix[12] = 0.0f;
matrix[13] = 0.0f;
matrix[14] = 0.0f;
matrix[15] = 1.0f;
}
void glusMatrix4x4MultiplyVector3f(float result[3], const float matrix[16], const float vector[3])
{
int i;
float temp[3];
for (i = 0; i < 3; i++)
{
temp[i] = matrix[i] * vector[0] + matrix[4 + i] * vector[1] + matrix[8 + i] * vector[2];
}
for (i = 0; i < 3; i++)
{
result[i] = temp[i];
}
}
}//namespace
/**
* ,0,0,01
* @param numberSlices
* @return
*/
Primitive *CreateSphere(PrimitiveCreater *pc,const uint numberSlices)
{
uint numberParallels = (numberSlices+1) / 2;
uint numberVertices = (numberParallels + 1) * (numberSlices + 1);
uint numberIndices = numberParallels * numberSlices * 6;
2019-06-17 20:25:44 +08:00
const double angleStep = double(2.0f * HGL_PI) / ((double) numberSlices);
// used later to help us calculating tangents vectors
float helpVector[3] = { 1.0f, 0.0f, 0.0f };
float helpQuaternion[4];
float helpMatrix[16];
float tex_x;
if(!pc->Init("Sphere",numberVertices,numberIndices))
return(nullptr);
VABMapFloat vertex (pc,VF_V3F,VAN::Position);
VABMapFloat normal (pc,VF_V3F,VAN::Normal);
VABMapFloat tangent (pc,VF_V3F,VAN::Tangent);
VABMapFloat tex_coord(pc,VF_V2F,VAN::TexCoord);
float *vp=vertex;
float *np=normal;
float *tp=tangent;
float *tcp=tex_coord;
if(!vp)
return(nullptr);
for (uint i = 0; i < numberParallels + 1; i++)
{
for (uint j = 0; j < numberSlices + 1; j++)
2020-07-09 20:37:34 +08:00
{
float x = sin(angleStep * (double) i) * sin(angleStep * (double) j);
float y = sin(angleStep * (double) i) * cos(angleStep * (double) j);
float z = cos(angleStep * (double) i);
2020-07-09 20:37:34 +08:00
*vp=x;++vp;
*vp=y;++vp;
*vp=z;++vp;
if(np)
{
*np=x;++np;
*np=y;++np;
*np=z;++np;
}
if(tcp)
{
tex_x=(float) j / (float) numberSlices;
2019-06-17 20:25:44 +08:00
*tcp=tex_x;++tcp;
*tcp=1.0f - (float) i / (float) numberParallels;++tcp;
if(tp)
{
// use quaternion to get the tangent vector
glusQuaternionRotateRyf(helpQuaternion, 360.0f * tex_x);
glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion);
glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector);
tp+=3;
}
}
}
2019-06-17 20:25:44 +08:00
}
//索引
{
const IndexType index_type=pc->GetIndexType();
if(index_type==IndexType::U16)CreateSphereIndices<uint16>(pc,numberParallels,numberSlices);else
if(index_type==IndexType::U32)CreateSphereIndices<uint32>(pc,numberParallels,numberSlices);else
if(index_type==IndexType::U8 )CreateSphereIndices<uint8 >(pc,numberParallels,numberSlices);else
return(nullptr);
}
return pc->Create();
}
Primitive *CreateDome(PrimitiveCreater *pc,const uint numberSlices)
{
if(!pc)return(nullptr);
uint i, j;
uint numberParallels = numberSlices / 4;
uint numberVertices = (numberParallels + 1) * (numberSlices + 1);
uint numberIndices = numberParallels * numberSlices * 6;
float angleStep = (2.0f * HGL_PI) / ((float) numberSlices);
// used later to help us calculating tangents vectors
float helpVector[3] = { 1.0f, 0.0f, 0.0f };
float helpQuaternion[4];
float helpMatrix[16];
float tex_x;
if (numberSlices < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return nullptr;
if(!pc->Init("Dome",numberVertices,numberIndices))
return(nullptr);
VABMapFloat vertex (pc,VF_V3F,VAN::Position);
VABMapFloat normal (pc,VF_V3F,VAN::Normal);
VABMapFloat tangent (pc,VF_V3F,VAN::Tangent);
VABMapFloat tex_coord(pc,VF_V2F,VAN::TexCoord);
float *vp=vertex;
float *np=normal;
float *tp=tangent;
float *tcp=tex_coord;
if(!vp)
return(nullptr);
for (i = 0; i < numberParallels + 1; i++)
{
for (j = 0; j < numberSlices + 1; j++)
{
uint vertexIndex = (i * (numberSlices + 1) + j) * 4;
uint normalIndex = (i * (numberSlices + 1) + j) * 3;
uint tangentIndex = (i * (numberSlices + 1) + j) * 3;
uint texCoordsIndex = (i * (numberSlices + 1) + j) * 2;
2022-02-28 16:54:24 +08:00
float x = sin(angleStep * (double) i) * sin(angleStep * (double) j);
float y = sin(angleStep * (double) i) * cos(angleStep * (double) j);
float z = cos(angleStep * (double) i);
*vp=x;++vp;
*vp=y;++vp;
*vp=z;++vp;
if(np)
{
*np=+x;++np;
*np=-y;++np;
*np=+z;++np;
}
if(tcp)
{
tex_x=(float) j / (float) numberSlices;
2022-02-28 16:54:24 +08:00
*tcp=tex_x;++tcp;
*tcp=1.0f - (float) i / (float) numberParallels;++tcp;
if(tp)
{
// use quaternion to get the tangent vector
glusQuaternionRotateRyf(helpQuaternion, 360.0f * tex_x);
glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion);
glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector);
tp+=3;
}
}
}
}
//索引
{
const IndexType index_type=pc->GetIndexType();
if(index_type==IndexType::U16)CreateSphereIndices<uint16>(pc,numberParallels,numberSlices);else
if(index_type==IndexType::U32)CreateSphereIndices<uint32>(pc,numberParallels,numberSlices);else
if(index_type==IndexType::U8 )CreateSphereIndices<uint8 >(pc,numberParallels,numberSlices);else
return(nullptr);
}
return pc->Create();
}
namespace
{
template<typename T>
2024-05-23 14:00:23 +08:00
void CreateTorusIndices(PrimitiveCreater *pc,uint numberSlices,uint numberStacks)
{
2024-05-23 14:00:23 +08:00
IBMap<T> ib_map(pc);
T *tp=ib_map;
// loop counters
uint sideCount, faceCount;
// used to generate the indices
uint v0, v1, v2, v3;
for (sideCount = 0; sideCount < numberSlices; ++sideCount)
{
for (faceCount = 0; faceCount < numberStacks; ++faceCount)
{
// get the number of the vertices for a face of the torus. They must be < numVertices
v0 = ((sideCount * (numberStacks + 1)) + faceCount);
v1 = (((sideCount + 1) * (numberStacks + 1)) + faceCount);
v2 = (((sideCount + 1) * (numberStacks + 1)) + (faceCount + 1));
v3 = ((sideCount * (numberStacks + 1)) + (faceCount + 1));
// first triangle of the face, counter clock wise winding
*tp = v0; ++tp;
*tp = v2; ++tp;
*tp = v1; ++tp;
// second triangle of the face, counter clock wise winding
*tp = v0; ++tp;
*tp = v3; ++tp;
*tp = v2; ++tp;
}
}
}
}//namespace
Primitive *CreateTorus(PrimitiveCreater *pc,const TorusCreateInfo *tci)
{
if(!pc)return(nullptr);
// s, t = parametric values of the equations, in the range [0,1]
float s = 0;
float t = 0;
// sIncr, tIncr are increment values aplied to s and t on each loop iteration to generate the torus
float sIncr;
float tIncr;
// to store precomputed sin and cos values
float cos2PIs, sin2PIs, cos2PIt, sin2PIt;
uint sideCount,faceCount;
uint numberVertices;
uint numberIndices;
// used later to help us calculating tangents vectors
float helpVector[3] = { 0.0f, 1.0f, 0.0f };
float helpQuaternion[4];
float helpMatrix[16];
float torusRadius = (tci->outerRadius - tci->innerRadius) / 2.0f;
float centerRadius = tci->outerRadius - torusRadius;
numberVertices = (tci->numberStacks + 1) * (tci->numberSlices + 1);
numberIndices = tci->numberStacks * tci->numberSlices * 2 * 3; // 2 triangles per face * 3 indices per triangle
2020-07-09 20:37:34 +08:00
if (tci->numberSlices < 3 || tci->numberStacks < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return(nullptr);
sIncr = 1.0f / (float) tci->numberSlices;
tIncr = 1.0f / (float) tci->numberStacks;
2019-05-24 19:28:27 +08:00
if(!pc->Init("Torus",numberVertices,numberIndices))
return(nullptr);
VABMapFloat vertex (pc,VF_V3F,VAN::Position);
VABMapFloat normal (pc,VF_V3F,VAN::Normal);
VABMapFloat tangent (pc,VF_V3F,VAN::Tangent);
VABMapFloat tex_coord(pc,VF_V2F,VAN::TexCoord);
float *vp=vertex;
float *np=normal;
float *tp=tangent;
float *tcp=tex_coord;
if(!vp)
return(nullptr);
// generate vertices and its attributes
for (sideCount = 0; sideCount <= tci->numberSlices; ++sideCount, s += sIncr)
{
// precompute some values
cos2PIs = cos(2.0f * HGL_PI * s);
sin2PIs = sin(2.0f * HGL_PI * s);
t = 0.0f;
for (faceCount = 0; faceCount <= tci->numberStacks; ++faceCount, t += tIncr)
{
// precompute some values
cos2PIt = cos(2.0f * HGL_PI * t);
sin2PIt = sin(2.0f * HGL_PI * t);
// generate vertex and stores it in the right position
*vp = (centerRadius + torusRadius * cos2PIt) * cos2PIs; ++vp;
*vp = torusRadius * sin2PIt; ++vp;
*vp = (centerRadius + torusRadius * cos2PIt) * sin2PIs; ++vp;
if(np)
{
// generate normal and stores it in the right position
// NOTE: cos (2PIx) = cos (x) and sin (2PIx) = sin (x) so, we can use this formula
// normal = {cos(2PIs)cos(2PIt) , sin(2PIs)cos(2PIt) ,sin(2PIt)}
*np = +cos2PIs * cos2PIt; ++np;
2024-03-15 01:38:47 +08:00
*np = +sin2PIt; ++np;
*np = +sin2PIs * cos2PIt; ++np;
}
if(tcp)
{
// generate texture coordinates and stores it in the right position
*tcp = s*tci->uv_scale.x; ++tcp;
*tcp = t*tci->uv_scale.y; ++tcp;
}
if(tp)
{
// use quaternion to get the tangent vector
glusQuaternionRotateRzf(helpQuaternion, 360.0f * s);
glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion);
glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector);
tp+=3;
}
}
}
//索引
{
const IndexType index_type=pc->GetIndexType();
2019-05-24 19:28:27 +08:00
if(index_type==IndexType::U16)CreateTorusIndices<uint16>(pc,tci->numberSlices,tci->numberStacks);else
if(index_type==IndexType::U32)CreateTorusIndices<uint32>(pc,tci->numberSlices,tci->numberStacks);else
if(index_type==IndexType::U8 )CreateTorusIndices<uint8 >(pc,tci->numberSlices,tci->numberStacks);else
return(nullptr);
}
return pc->Create();
}
2019-05-24 19:28:27 +08:00
namespace
{
template<typename T>
2024-05-23 14:00:23 +08:00
void CreateCylinderIndices(PrimitiveCreater *pc,const uint numberSlices)
{
2024-05-23 14:00:23 +08:00
IBMap<T> ib_map(pc);
T *tp=ib_map;
uint i;
T centerIndex = 0;
T indexCounter = 1;
for (i = 0; i < numberSlices; i++)
{
*tp = centerIndex; ++tp;
*tp = indexCounter; ++tp;
*tp = indexCounter + 1; ++tp;
indexCounter++;
}
indexCounter++;
// Top
centerIndex = indexCounter;
indexCounter++;
for (i = 0; i < numberSlices; i++)
{
*tp = centerIndex; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter; ++tp;
indexCounter++;
}
indexCounter++;
// Sides
for (i = 0; i < numberSlices; i++)
{
*tp = indexCounter; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter + 2; ++tp;
*tp = indexCounter + 2; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter + 3; ++tp;
indexCounter += 2;
}
}
}//namespace
Primitive *CreateCylinder(PrimitiveCreater *pc,const CylinderCreateInfo *cci)
{
uint numberIndices = cci->numberSlices * 3 * 2 + cci->numberSlices * 6;
if(numberIndices<=0)
return(nullptr);
uint numberVertices = (cci->numberSlices + 2) * 2 + (cci->numberSlices + 1) * 2;
if(!pc->Init("Cylinder",numberVertices,numberIndices))
return(nullptr);
float angleStep = (2.0f * HGL_PI) / ((float) cci->numberSlices);
if (cci->numberSlices < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return nullptr;
VABMapFloat vertex (pc,VF_V3F,VAN::Position);
VABMapFloat normal (pc,VF_V3F,VAN::Normal);
VABMapFloat tangent (pc,VF_V3F,VAN::Tangent);
VABMapFloat tex_coord(pc,VF_V2F,VAN::TexCoord);
float *vp=vertex;
float *np=normal;
float *tp=tangent;
float *tcp=tex_coord;
if(!vp)
return(nullptr);
*vp = 0.0f; ++vp;
*vp = 0.0f; ++vp;
*vp = -cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np =-1.0f; ++np;
}
if(tp)
{
*tp = 0.0f; ++tp;
*tp = 1.0f; ++tp;
*tp = 0.0f; ++tp;
}
if(tcp)
{
*tcp = 0.0f; ++tcp;
*tcp = 0.0f; ++tcp;
}
for(uint i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
*vp = cos(currentAngle) * cci->radius; ++vp;
*vp = -sin(currentAngle) * cci->radius; ++vp;
*vp = -cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np =-1.0f; ++np;
}
if(tp)
{
*tp = sin(currentAngle); ++tp;
*tp = cos(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tcp)
{
*tcp = 0.0f; ++tcp;
*tcp = 0.0f; ++tcp;
}
}
*vp = 0.0f; ++vp;
*vp = 0.0f; ++vp;
*vp = cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np = 1.0f; ++np;
}
if(tp)
{
*tp = 0.0f; ++tp;
*tp = -1.0f; ++tp;
*tp = 0.0f; ++tp;
}
if(tcp)
{
*tcp = 1.0f; ++tcp;
*tcp = 1.0f; ++tcp;
}
for(uint i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
*vp = cos(currentAngle) * cci->radius; ++vp;
*vp = -sin(currentAngle) * cci->radius; ++vp;
*vp = cci->halfExtend; ++vp;
if(np)
{
*np = 0.0f; ++np;
*np = 0.0f; ++np;
*np = 1.0f; ++np;
}
if(tp)
{
2020-09-17 21:56:16 +08:00
*tp = -sin(currentAngle); ++tp;
*tp = -cos(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tcp)
{
*tcp = 1.0f; ++tcp;
*tcp = 1.0f; ++tcp;
}
}
for(uint i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
float sign = -1.0f;
for (uint j = 0; j < 2; j++)
{
*vp = cos(currentAngle) * cci->radius; ++vp;
*vp = -sin(currentAngle) * cci->radius; ++vp;
*vp = cci->halfExtend * sign; ++vp;
if(np)
{
*np = cos(currentAngle); ++np;
2024-03-15 01:38:47 +08:00
*np = -sin(currentAngle); ++np;
*np = 0.0f; ++np;
}
if(tp)
{
*tp = -sin(currentAngle); ++tp;
*tp = -cos(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tcp)
{
*tcp = (float)i / (float)cci->numberSlices; ++tcp;
*tcp = (sign + 1.0f) / 2.0f; ++tcp;
}
sign = 1.0f;
}
}
//索引
{
const IndexType index_type=pc->GetIndexType();
if(index_type==IndexType::U16)CreateCylinderIndices<uint16>(pc,cci->numberSlices);else
if(index_type==IndexType::U32)CreateCylinderIndices<uint32>(pc,cci->numberSlices);else
if(index_type==IndexType::U8 )CreateCylinderIndices<uint8 >(pc,cci->numberSlices);else
return(nullptr);
}
return pc->Create();
}
namespace
{
template<typename T>
2024-05-23 14:00:23 +08:00
void CreateConeIndices(PrimitiveCreater *pc,const uint numberSlices,const uint numberStacks)
2020-09-17 21:56:16 +08:00
{
2024-05-23 14:00:23 +08:00
IBMap<T> ib_map(pc);
T *tp=ib_map;
// Bottom
uint centerIndex = 0;
uint indexCounter = 1;
uint i,j;
2020-09-17 21:56:16 +08:00
for (i = 0; i < numberSlices; i++)
{
*tp = centerIndex; ++tp;
*tp = indexCounter; ++tp;
*tp = indexCounter + 1; ++tp;
2020-09-17 21:56:16 +08:00
indexCounter++;
}
indexCounter++;
// Sides
for (j = 0; j < numberStacks; j++)
{
for (i = 0; i < numberSlices; i++)
{
*tp = indexCounter; ++tp;
*tp = indexCounter + numberSlices + 1; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter + 1; ++tp;
*tp = indexCounter + numberSlices + 1; ++tp;
*tp = indexCounter + numberSlices + 2; ++tp;
2019-05-27 22:48:01 +08:00
indexCounter++;
}
indexCounter++;
}
}
}//namespace
2020-07-09 20:37:34 +08:00
Primitive *CreateCone(PrimitiveCreater *pc,const ConeCreateInfo *cci)
{
uint i, j;
2019-06-17 20:25:44 +08:00
uint numberVertices = (cci->numberSlices + 2) + (cci->numberSlices + 1) * (cci->numberStacks + 1);
2024-04-18 01:09:29 +08:00
uint numberIndices = cci->numberSlices * 3 + cci->numberSlices * 6 * cci->numberStacks;
2019-06-17 20:25:44 +08:00
if(!pc->Init("Cone",numberVertices,numberIndices))
return(nullptr);
2019-06-17 20:25:44 +08:00
float angleStep = (2.0f * HGL_PI) / ((float) cci->numberSlices);
float h = 2.0f * cci->halfExtend;
float r = cci->radius;
float l = sqrtf(h*h + r*r);
if (cci->numberSlices < 3 || cci->numberStacks < 1 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES)
return nullptr;
VABMapFloat vertex (pc,VF_V3F,VAN::Position);
VABMapFloat normal (pc,VF_V3F,VAN::Normal);
VABMapFloat tangent (pc,VF_V3F,VAN::Tangent);
VABMapFloat tex_coord(pc,VF_V2F,VAN::TexCoord);
float *vp=vertex;
float *np=normal;
float *tp=tangent;
float *tcp=tex_coord;
2019-06-17 20:25:44 +08:00
if(!vp)
return(nullptr);
2019-06-17 20:25:44 +08:00
*vp = 0.0f; ++vp;
*vp = 0.0f; ++vp;
*vp = -cci->halfExtend; ++vp;
2019-06-17 20:25:44 +08:00
if(np)
{
2020-09-17 21:56:16 +08:00
*np = 0.0f;++np;
*np = 0.0f;++np;
*np =-1.0f;++np;
}
2019-06-17 20:25:44 +08:00
if(tp)
{
*tp = 0.0f; ++tp;
*tp = 1.0f; ++tp;
*tp = 0.0f; ++tp;
}
2019-06-17 10:37:59 +08:00
if(tcp)
{
2020-09-17 21:56:16 +08:00
*tcp = 0.0f; ++tcp;
*tcp = 0.0f; ++tcp;
}
2020-07-09 20:37:34 +08:00
2020-09-17 21:56:16 +08:00
for (i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
2019-06-17 10:37:59 +08:00
*vp = cos(currentAngle) * cci->radius; ++vp;
*vp = -sin(currentAngle) * cci->radius; ++vp;
*vp = -cci->halfExtend; ++vp;
2019-06-17 20:25:44 +08:00
if(np)
{
*np = 0.0f;++np;
*np = 0.0f;++np;
*np =-1.0f;++np;
}
2019-06-17 20:25:44 +08:00
if(tp)
{
*tp = sin(currentAngle); ++tp;
*tp = cos(currentAngle); ++tp;
2020-09-17 21:56:16 +08:00
*tp = 0.0f; ++tp;
}
2019-06-17 20:25:44 +08:00
if(tcp)
{
*tcp = 0.0f; ++tcp;
*tcp = 0.0f; ++tcp;
}
}
for (j = 0; j < cci->numberStacks + 1; j++)
{
float level = (float)j / (float)cci->numberStacks;
for (i = 0; i < cci->numberSlices + 1; i++)
{
float currentAngle = angleStep * (float)i;
*vp = cos(currentAngle) * cci->radius * (1.0f - level); ++vp;
*vp = -sin(currentAngle) * cci->radius * (1.0f - level); ++vp;
*vp = -cci->halfExtend + 2.0f * cci->halfExtend * level; ++vp;
2020-10-21 18:24:00 +08:00
if(np)
{
*np = h / l * cos(currentAngle); ++np;
2024-03-15 01:38:47 +08:00
*np =-h / l * sin(currentAngle); ++np;
*np = r / l; ++np;
}
if(tp)
{
*tp = -sin(currentAngle); ++tp;
*tp = -cos(currentAngle); ++tp;
*tp = 0.0f; ++tp;
}
if(tcp)
{
*tcp = (float)i / (float)cci->numberSlices; ++tcp;
*tcp = level; ++tcp;
}
}
}
//索引
{
const IndexType index_type=pc->GetIndexType();
if(index_type==IndexType::U16)CreateConeIndices<uint16>(pc,cci->numberSlices,cci->numberStacks);else
if(index_type==IndexType::U32)CreateConeIndices<uint32>(pc,cci->numberSlices,cci->numberStacks);else
if(index_type==IndexType::U8 )CreateConeIndices<uint8 >(pc,cci->numberSlices,cci->numberStacks);else
return(nullptr);
}
return pc->Create();
}
Primitive *CreateAxis(PrimitiveCreater *pc,const AxisCreateInfo *aci)
{
if(!pc||!aci)return(nullptr);
if(!pc)return(nullptr);
if(!pc->Init("Axis",6,0))
return(nullptr);
VABMap3f vertex(pc,VAN::Position);
VABMap4f color(pc,VAN::Color);
if(!vertex.IsValid()||!color.IsValid())
return(nullptr);
const float s=aci->size;
vertex->Write(0,0,0);color->Write(aci->color[0]);
vertex->Write(s,0,0);color->Write(aci->color[0]);
vertex->Write(0,0,0);color->Write(aci->color[1]);
vertex->Write(0,s,0);color->Write(aci->color[1]);
vertex->Write(0,0,0);color->Write(aci->color[2]);
vertex->Write(0,0,s);color->Write(aci->color[2]);
return pc->Create();
}
Primitive *CreateBoundingBox(PrimitiveCreater *pc,const BoundingBoxCreateInfo *cci)
{
// Points of a cube.
/* 4 5 */ const float points[]={ -0.5,-0.5, 0.5, 0.5,-0.5,0.5, 0.5,-0.5,-0.5, -0.5,-0.5,-0.5,
/* *------------* */ -0.5, 0.5, 0.5, 0.5, 0.5,0.5, 0.5, 0.5,-0.5, -0.5, 0.5,-0.5};
/* /| /| */
/* 0/ | 1/ | */
/* *--+---------* | */
/* | | | | */
/* | 7| | 6| */
/* | *---------+--* */
/* | / | / */
/* |/ 2|/ */
/* 3*------------* */
const uint16 indices[]=
{
0,1, 1,2, 2,3, 3,0,
4,5, 5,6, 6,7, 7,4,
0,4, 1,5, 2,6, 3,7
};
if(!pc)return(nullptr);
if(!pc->Init("BoundingBox",8,24,IndexType::U16))
return(nullptr);
if(!pc->WriteVAB(VAN::Position,VF_V3F,points))
return(nullptr);
if(cci->color_type!=BoundingBoxCreateInfo::ColorType::NoColor)
{
RANGE_CHECK_RETURN_NULLPTR(cci->color_type);
VABMap4f color(pc,VAN::Color);
if(color.IsValid())
{
if(cci->color_type==BoundingBoxCreateInfo::ColorType::SameColor)
color->RepeatWrite(cci->color[0],8);
else
if(cci->color_type==BoundingBoxCreateInfo::ColorType::VertexColor)
color->Write(cci->color,8);
}
}
pc->WriteIBO<uint16>(indices);
return pc->Create();
}
}//namespace inline_geometry
2019-05-24 19:28:27 +08:00
}//namespace graph
2020-01-23 21:00:35 +08:00
}//namespace hgl