拆分数学功能定义
This commit is contained in:
parent
f64ee43576
commit
5e9bb09621
23
inc/hgl/math/FastTriangle.h
Normal file
23
inc/hgl/math/FastTriangle.h
Normal file
@ -0,0 +1,23 @@
|
||||
#ifndef HGL_ALGORITHM_MATH_FAST_TRIANGLE_FUNCTION_INCLUDE
|
||||
#define HGL_ALGORITHM_MATH_FAST_TRIANGLE_FUNCTION_INCLUDE
|
||||
|
||||
namespace hgl
|
||||
{
|
||||
double Lsin(int angle); ///<低精度sin计算,注意传入的参数为角度而非弧度
|
||||
double Lcos(int angle); ///<低精度cos计算,注意传入的参数为角度而非弧度
|
||||
void Lsincos(int angle, double &s, double &c); ///<低精度sin+cos计算,注意传入的参数为角度而非弧度
|
||||
|
||||
/**
|
||||
* 低精度atan函数
|
||||
*/
|
||||
double inline Latan(double z)
|
||||
{
|
||||
constexpr double n1 = 0.97239411f;
|
||||
constexpr double n2 = -0.19194795f;
|
||||
|
||||
return (n1 + n2 * z * z) * z;
|
||||
}
|
||||
|
||||
double Latan2(double y, double x); ///<低精度atan2函数
|
||||
}//namespace hgl
|
||||
#endif//HGL_ALGORITHM_MATH_FAST_TRIANGLE_FUNCTION_INCLUDE
|
@ -1,155 +1,8 @@
|
||||
#ifndef HGL_ALGORITHM_VECTOR_MATH_INCLUDE
|
||||
#define HGL_ALGORITHM_VECTOR_MATH_INCLUDE
|
||||
#ifndef HGL_ALGORITHM_MATH_INCLUDE
|
||||
#define HGL_ALGORITHM_MATH_INCLUDE
|
||||
|
||||
#include<hgl/type/DataType.h>
|
||||
#include<hgl/math/FastTriangle.h>
|
||||
#include<hgl/math/Vector.h> // Game Math and Geometry Library
|
||||
#include<hgl/math/Matrix.h>
|
||||
|
||||
//注:GLM/CML(OpenGLMode)是列矩阵,计算坐标matrix*pos
|
||||
// 而MGL是行矩阵,需要反过来pos*matrix
|
||||
|
||||
#include<hgl/math/MathMGL.h> // Game Math and Geometry Library
|
||||
|
||||
namespace hgl
|
||||
{
|
||||
namespace math
|
||||
{
|
||||
double Lsin(int angle); ///<低精度sin计算,注意传入的参数为角度而非弧度
|
||||
double Lcos(int angle); ///<低精度cos计算,注意传入的参数为角度而非弧度
|
||||
void Lsincos(int angle, double &s, double &c); ///<低精度sin+cos计算,注意传入的参数为角度而非弧度
|
||||
|
||||
/**
|
||||
* 低精度atan函数
|
||||
*/
|
||||
double inline Latan(double z)
|
||||
{
|
||||
constexpr double n1 = 0.97239411f;
|
||||
constexpr double n2 = -0.19194795f;
|
||||
|
||||
return (n1 + n2 * z * z) * z;
|
||||
}
|
||||
|
||||
double Latan2(double y, double x); ///<低精度atan2函数
|
||||
|
||||
inline float length_squared(const Vector2f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y);
|
||||
}
|
||||
|
||||
inline float length_squared_2d(const Vector3f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y);
|
||||
}
|
||||
|
||||
inline float length_squared(const Vector3f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
|
||||
}
|
||||
|
||||
inline float length_squared(const Vector4f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline float length(const T &v)
|
||||
{
|
||||
return sqrt(length_squared(v));
|
||||
}
|
||||
|
||||
inline float length_2d(const Vector3f &v)
|
||||
{
|
||||
return sqrt(length_squared_2d(v));
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length_squared(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
const float x = (v1.x - v2.x);
|
||||
const float y = (v1.y - v2.y);
|
||||
|
||||
return x*x + y*y;
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
return sqrt(length_squared(v1, v2));
|
||||
}
|
||||
|
||||
inline float length_squared(const Vector3f &v1, const Vector3f &v2)
|
||||
{
|
||||
const float x = (v1.x - v2.x);
|
||||
const float y = (v1.y - v2.y);
|
||||
const float z = (v1.z - v2.z);
|
||||
|
||||
return x*x + y*y + z*z;
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length_squared_2d(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
const float x = (v1.x - v2.x);
|
||||
const float y = (v1.y - v2.y);
|
||||
|
||||
return x*x + y*y;
|
||||
}
|
||||
|
||||
inline float length(const Vector3f &v1, const Vector3f &v2)
|
||||
{
|
||||
return sqrt(length_squared(v1, v2));
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length_2d(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
return sqrt(length_squared_2d(v1, v2));
|
||||
}
|
||||
|
||||
inline Vector2f to(const Vector2f &start, const Vector2f &end, float pos)
|
||||
{
|
||||
return Vector2f(start.x + (end.x - start.x)*pos,
|
||||
start.y + (end.y - start.y)*pos);
|
||||
}
|
||||
|
||||
inline Vector3f to(const Vector3f &start, const Vector3f &end, float pos)
|
||||
{
|
||||
return Vector3f(start.x + (end.x - start.x)*pos,
|
||||
start.y + (end.y - start.y)*pos,
|
||||
start.z + (end.z - start.z)*pos);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline void to_2d(T &result, const T &start, const T &end, float pos)
|
||||
{
|
||||
result.x = start.x + (end.x - start.x)*pos;
|
||||
result.y = start.y + (end.y - start.y)*pos;
|
||||
}
|
||||
|
||||
inline float ray_angle_cos(const Vector3f &ray_dir, const Vector3f &ray_pos, const Vector3f &pos)
|
||||
{
|
||||
return dot(ray_dir, normalized(pos - ray_pos));
|
||||
}
|
||||
|
||||
/**
|
||||
* 做一个2D旋转计算
|
||||
* @param result 结果
|
||||
* @param source 原始点坐标
|
||||
* @param center 圆心坐标
|
||||
* @param ang 旋转角度
|
||||
*/
|
||||
template<typename T1, typename T2, typename T3>
|
||||
inline void rotate2d(T1 &result, const T2 &source, const T3 ¢er, const double ang)
|
||||
{
|
||||
double as, ac;
|
||||
// double nx,ny;
|
||||
|
||||
// as=sin(ang*(HGL_PI/180.0f));
|
||||
// ac=cos(ang*(HGL_PI/180.0f));
|
||||
//sincos(ang*(HGL_PI/180.0f),&as,&ac); //在80x87指令上,sin/cos是一个指令同时得出sin和cos,所以可以这样做
|
||||
Lsincos(ang, as, ac); //低精度sin/cos计算
|
||||
|
||||
result.x = center.x + ((source.x - center.x)*ac - (source.y - center.y)*as);
|
||||
result.y = center.y + ((source.x - center.x)*as + (source.y - center.y)*ac);
|
||||
}
|
||||
}//namespace math
|
||||
}//namespace hgl
|
||||
#endif//HGL_ALGORITHM_VECTOR_MATH_INCLUDE
|
||||
#endif//HGL_ALGORITHM_MATH_INCLUDE
|
||||
|
@ -1,249 +0,0 @@
|
||||
#ifndef HGL_ALGORITHM_VECTOR_MATH_MGL_INCLUDE
|
||||
#define HGL_ALGORITHM_VECTOR_MATH_MGL_INCLUDE
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(disable:4244) // double -> int 精度丢失警告
|
||||
#endif//_MSC_VER
|
||||
|
||||
#include<MathGeoLib.h>
|
||||
|
||||
/**
|
||||
* MathGeoLib
|
||||
* Game Math and Geometry Library
|
||||
*
|
||||
* My C++ library for 3D mathematics and geometry manipulation.
|
||||
* Jukka Jylänki
|
||||
*
|
||||
* offical web: http://clb.demon.fi/MathGeoLib/nightly/
|
||||
*
|
||||
* License:
|
||||
*
|
||||
* This library is licensed under the Apache 2 license. I am not a lawyer, but to me that
|
||||
* license means that you can use this code for any purpose, both commercial and closed source.
|
||||
* You are however restricted from claiming you wrote it yourself, and cannot hold me liable
|
||||
* for anything over this code.
|
||||
* I acknowledge that most of the non-trivial math routines are taken off a book or a
|
||||
* research paper. In all places, I have tried to be diligent to properly attribute the original
|
||||
* source. Please contact me if you feel I have misattributed something.
|
||||
*/
|
||||
|
||||
namespace hgl
|
||||
{
|
||||
using namespace math;
|
||||
|
||||
typedef float2 Vector2f;
|
||||
typedef float3 Vector3f;
|
||||
typedef float4 Vector4f;
|
||||
|
||||
typedef float3x3 Matrix3f;
|
||||
typedef float4x4 Matrix4f;
|
||||
|
||||
inline bool operator == (const Vector2f &lhs,const Vector2f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(false);
|
||||
if(lhs.y!=rhs.y)return(false);
|
||||
return(true);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector2f &lhs,const Vector2f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(true);
|
||||
if(lhs.y!=rhs.y)return(true);
|
||||
return(false);
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector3f &lhs,const Vector3f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(false);
|
||||
if(lhs.y!=rhs.y)return(false);
|
||||
if(lhs.z!=rhs.z)return(false);
|
||||
return(true);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector3f &lhs,const Vector3f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(true);
|
||||
if(lhs.y!=rhs.y)return(true);
|
||||
if(lhs.z!=rhs.z)return(true);
|
||||
return(false);
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector4f &lhs,const Vector4f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(false);
|
||||
if(lhs.y!=rhs.y)return(false);
|
||||
if(lhs.z!=rhs.z)return(false);
|
||||
if(lhs.w!=rhs.w)return(false);
|
||||
return(true);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector4f &lhs,const Vector4f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(true);
|
||||
if(lhs.y!=rhs.y)return(true);
|
||||
if(lhs.z!=rhs.z)return(true);
|
||||
if(lhs.w!=rhs.w)return(true);
|
||||
return(false);
|
||||
}
|
||||
|
||||
inline void vec3to2(Vector2f &dst,const Vector3f &src)
|
||||
{
|
||||
dst.x=src.x;
|
||||
dst.y=src.y;
|
||||
}
|
||||
|
||||
inline Vector2f vec3to2(const Vector3f &src)
|
||||
{
|
||||
return Vector2f(src.x,src.y);
|
||||
}
|
||||
|
||||
inline void vec2to3(Vector3f &dst,const Vector2f &src,const float z)
|
||||
{
|
||||
dst.x=src.x;
|
||||
dst.y=src.y;
|
||||
dst.z=z;
|
||||
}
|
||||
|
||||
inline Vector3f vec2to3(const Vector2f &src,const float z)
|
||||
{
|
||||
return Vector3f(src.x,src.y,z);
|
||||
}
|
||||
|
||||
inline Matrix4f identity()
|
||||
{
|
||||
return Matrix4f::identity;
|
||||
}
|
||||
|
||||
inline Matrix4f inverse(const Matrix4f &m)
|
||||
{
|
||||
return m.Inverted();
|
||||
}
|
||||
|
||||
inline Matrix4f ortho( float left_plane,
|
||||
float right_plane,
|
||||
float bottom_plane,
|
||||
float top_plane,
|
||||
float near_plane,
|
||||
float far_plane )
|
||||
{
|
||||
return Matrix4f(
|
||||
2.0f / (right_plane - left_plane), 0.0f, 0.0f, -(right_plane + left_plane) / (right_plane - left_plane),
|
||||
0.0f, 2.0f / (bottom_plane - top_plane), 0.0f, -(bottom_plane + top_plane) / (bottom_plane - top_plane),
|
||||
0.0f, 0.0f, 1.0f / (near_plane - far_plane),near_plane / (near_plane - far_plane),
|
||||
0.0f, 0.0f, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成一个正角视图矩阵
|
||||
* @param width 宽
|
||||
* @param height 高
|
||||
* @param znear 近平面z值
|
||||
* @param zfar 远平台z值
|
||||
*/
|
||||
inline Matrix4f ortho(float width,float height,float znear=0,float zfar=1)
|
||||
{
|
||||
return Matrix4f(
|
||||
2.0f / width, 0.0f, 0.0f, -1,
|
||||
0.0f, 2.0f / height, 0.0f, -1,
|
||||
0.0f, 0.0f, 1.0f / (znear - zfar), znear / (znear - zfar),
|
||||
0.0f, 0.0f, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成一个透视矩阵
|
||||
* @param aspect_ratio 宽高比
|
||||
* @param field_of_view 视野
|
||||
* @param near_plane 近截面
|
||||
* @param far_plane 远截面
|
||||
*/
|
||||
inline Matrix4f perspective(float aspect_ratio,
|
||||
float field_of_view=45.0f,
|
||||
float near_plane=0.0f,
|
||||
float far_plane=1.0f)
|
||||
{
|
||||
const float f = 1.0f / tan( hgl_ang2rad( 0.5f * field_of_view ) );
|
||||
|
||||
return Matrix4f(
|
||||
f / aspect_ratio, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, -f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, far_plane / (near_plane - far_plane), (near_plane * far_plane) / (near_plane - far_plane),
|
||||
0.0f, 0.0f, -1.0f, 0.0f);
|
||||
}
|
||||
|
||||
inline Matrix4f translate(const Vector3f &v)
|
||||
{
|
||||
return Matrix4f::Translate(v);
|
||||
}
|
||||
|
||||
inline Matrix4f translate(float x,float y,float z)
|
||||
{
|
||||
return Matrix4f::Translate(x,y,z);
|
||||
}
|
||||
|
||||
inline Matrix4f scale(const Vector3f &v)
|
||||
{
|
||||
return Matrix4f::Scale(v,Vector3f::zero);
|
||||
}
|
||||
|
||||
inline Matrix4f scale(float x,float y,float z)
|
||||
{
|
||||
return Matrix4f::Scale(Vector3f(x,y,z),Vector3f::zero);
|
||||
}
|
||||
|
||||
inline Matrix4f scale(float s)
|
||||
{
|
||||
return Matrix4f::Scale(Vector3f(s,s,s),Vector3f::zero);
|
||||
}
|
||||
|
||||
inline Matrix4f rotate(float angle,const Vector3f &axis)
|
||||
{
|
||||
return Matrix4f::RotateAxisAngle(axis.Normalized(),angle);
|
||||
}
|
||||
|
||||
inline Matrix4f rotate(float angle,float x,float y,float z)
|
||||
{
|
||||
return rotate(angle,Vector3f(x,y,z));
|
||||
}
|
||||
|
||||
inline Matrix4f rotate(float angle,const Vector4f &axis)
|
||||
{
|
||||
return rotate(angle,Vector3f(axis.x,axis.y,axis.z));
|
||||
}
|
||||
|
||||
inline Vector3f rotate(const Vector3f &v3f,float angle,const Vector3f &axis)
|
||||
{
|
||||
Vector4f result=rotate(angle,axis)*Vector4f(v3f,1.0f);
|
||||
|
||||
return result.xyz();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline T normalized(const T &v)
|
||||
{
|
||||
return v.Normalized();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline void normalize(T &v)
|
||||
{
|
||||
v.Normalize();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline T cross(const T &v1,const T &v2)
|
||||
{
|
||||
return v1.Cross(v2);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline float dot(const T &v1,const T &v2)
|
||||
{
|
||||
return v1.Dot(v2);
|
||||
}
|
||||
|
||||
inline float ray_angle_cos(const Ray &ray,const vec &pos)
|
||||
{
|
||||
return ray.dir.Dot((pos-ray.pos).Normalized());
|
||||
}
|
||||
}//namespace hgl
|
||||
#endif//HGL_ALGORITHM_VECTOR_MATH_MGL_INCLUDE
|
153
inc/hgl/math/Matrix.h
Normal file
153
inc/hgl/math/Matrix.h
Normal file
@ -0,0 +1,153 @@
|
||||
#ifndef HGL_ALGORITHM_MATH_VECTOR_MATRIX_INCLUDE
|
||||
#define HGL_ALGORITHM_MATH_VECTOR_MATRIX_INCLUDE
|
||||
|
||||
#include<hgl/math/Vector.h>
|
||||
|
||||
//注:GLM/CML(OpenGLMode)是列矩阵,计算坐标matrix*pos
|
||||
// 而MGL是行矩阵,需要反过来pos*matrix
|
||||
|
||||
namespace hgl
|
||||
{
|
||||
using Matrix3f=float3x3;
|
||||
using Matrix4f=float4x4;
|
||||
|
||||
inline Matrix4f identity()
|
||||
{
|
||||
return Matrix4f::identity;
|
||||
}
|
||||
|
||||
inline Matrix4f inverse(const Matrix4f &m)
|
||||
{
|
||||
return m.Inverted();
|
||||
}
|
||||
|
||||
inline Matrix4f ortho( float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float znear,
|
||||
float zfar )
|
||||
{
|
||||
return Matrix4f(
|
||||
2.0f / (right - left), 0.0f, 0.0f, -(right + left) / (right - left),
|
||||
0.0f, 2.0f / (bottom - top), 0.0f, -(bottom + top) / (bottom - top),
|
||||
0.0f, 0.0f, 1.0f / (znear - zfar), znear / (znear - zfar),
|
||||
0.0f, 0.0f, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成一个正角视图矩阵
|
||||
* @param width 宽
|
||||
* @param height 高
|
||||
* @param znear 近平面z值
|
||||
* @param zfar 远平台z值
|
||||
*/
|
||||
inline Matrix4f ortho(float width,float height,float znear,float zfar)
|
||||
{
|
||||
return Matrix4f(
|
||||
2.0f / width, 0.0f, 0.0f, -1,
|
||||
0.0f, 2.0f / height, 0.0f, -1,
|
||||
0.0f, 0.0f, 1.0f / (znear - zfar), znear / (znear - zfar),
|
||||
0.0f, 0.0f, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成一个正角视图矩阵
|
||||
* @param width 宽
|
||||
* @param height 高
|
||||
*/
|
||||
inline Matrix4f ortho(float width,float height)
|
||||
{
|
||||
return Matrix4f(
|
||||
2.0f / width, 0.0f, 0.0f, -1,
|
||||
0.0f, 2.0f / height, 0.0f, -1,
|
||||
0.0f, 0.0f, -1.0f , 0.0f,
|
||||
0.0f, 0.0f, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成一个透视矩阵
|
||||
* @param aspect_ratio 宽高比
|
||||
* @param field_of_view 视野
|
||||
* @param znear 近截面
|
||||
* @param zfar 远截面
|
||||
*/
|
||||
inline Matrix4f perspective(float aspect_ratio,
|
||||
float field_of_view,
|
||||
float znear,
|
||||
float zfar)
|
||||
{
|
||||
const float f = 1.0f / tan( hgl_ang2rad( 0.5f * field_of_view ) );
|
||||
|
||||
return Matrix4f(
|
||||
f / aspect_ratio, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, -f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, zfar / (znear - zfar), (znear * zfar) / (znear - zfar),
|
||||
0.0f, 0.0f, -1.0f, 0.0f);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成一个透视矩阵
|
||||
* @param aspect_ratio 宽高比
|
||||
* @param field_of_view 视野
|
||||
*/
|
||||
inline Matrix4f perspective(float aspect_ratio,
|
||||
float field_of_view=45.0f)
|
||||
{
|
||||
const float f = 1.0f / tan( hgl_ang2rad( 0.5f * field_of_view ) );
|
||||
|
||||
return Matrix4f(
|
||||
f / aspect_ratio, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, -f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, -1.0f, 0.0f,
|
||||
0.0f, 0.0f, -1.0f, 0.0f);
|
||||
}
|
||||
|
||||
inline Matrix4f translate(const Vector3f &v)
|
||||
{
|
||||
return Matrix4f::Translate(v);
|
||||
}
|
||||
|
||||
inline Matrix4f translate(float x,float y,float z)
|
||||
{
|
||||
return Matrix4f::Translate(x,y,z);
|
||||
}
|
||||
|
||||
inline Matrix4f scale(const Vector3f &v)
|
||||
{
|
||||
return Matrix4f::Scale(v,Vector3f::zero);
|
||||
}
|
||||
|
||||
inline Matrix4f scale(float x,float y,float z)
|
||||
{
|
||||
return Matrix4f::Scale(Vector3f(x,y,z),Vector3f::zero);
|
||||
}
|
||||
|
||||
inline Matrix4f scale(float s)
|
||||
{
|
||||
return Matrix4f::Scale(Vector3f(s,s,s),Vector3f::zero);
|
||||
}
|
||||
|
||||
inline Matrix4f rotate(float angle,const Vector3f &axis)
|
||||
{
|
||||
return Matrix4f::RotateAxisAngle(axis.Normalized(),angle);
|
||||
}
|
||||
|
||||
inline Matrix4f rotate(float angle,float x,float y,float z)
|
||||
{
|
||||
return rotate(angle,Vector3f(x,y,z));
|
||||
}
|
||||
|
||||
inline Matrix4f rotate(float angle,const Vector4f &axis)
|
||||
{
|
||||
return rotate(angle,Vector3f(axis.x,axis.y,axis.z));
|
||||
}
|
||||
|
||||
inline Vector3f rotate(const Vector3f &v3f,float angle,const Vector3f &axis)
|
||||
{
|
||||
Vector4f result=rotate(angle,axis)*Vector4f(v3f,1.0f);
|
||||
|
||||
return result.xyz();
|
||||
}
|
||||
}//namespace hgl
|
||||
#endif//HGL_ALGORITHM_MATH_VECTOR_MATRIX_INCLUDE
|
258
inc/hgl/math/Vector.h
Normal file
258
inc/hgl/math/Vector.h
Normal file
@ -0,0 +1,258 @@
|
||||
#ifndef HGL_ALGORITHM_MATH_VECTOR_INCLUDE
|
||||
#define HGL_ALGORITHM_MATH_VECTOR_INCLUDE
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma warning(disable:4244) // double -> int 精度丢失警告
|
||||
#endif//_MSC_VER
|
||||
|
||||
#include<MathGeoLib.h>
|
||||
|
||||
/**
|
||||
* MathGeoLib
|
||||
* Game Math and Geometry Library
|
||||
*
|
||||
* My C++ library for 3D mathematics and geometry manipulation.
|
||||
* Jukka Jylänki
|
||||
*
|
||||
* offical web: http://clb.demon.fi/MathGeoLib/nightly/
|
||||
*
|
||||
* License:
|
||||
*
|
||||
* This library is licensed under the Apache 2 license. I am not a lawyer, but to me that
|
||||
* license means that you can use this code for any purpose, both commercial and closed source.
|
||||
* You are however restricted from claiming you wrote it yourself, and cannot hold me liable
|
||||
* for anything over this code.
|
||||
* I acknowledge that most of the non-trivial math routines are taken off a book or a
|
||||
* research paper. In all places, I have tried to be diligent to properly attribute the original
|
||||
* source. Please contact me if you feel I have misattributed something.
|
||||
*/
|
||||
|
||||
namespace hgl
|
||||
{
|
||||
using Vector2f=float2;
|
||||
using Vector3f=float3;
|
||||
using Vector4f=float4;
|
||||
|
||||
inline bool operator == (const Vector2f &lhs,const Vector2f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(false);
|
||||
if(lhs.y!=rhs.y)return(false);
|
||||
return(true);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector2f &lhs,const Vector2f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(true);
|
||||
if(lhs.y!=rhs.y)return(true);
|
||||
return(false);
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector3f &lhs,const Vector3f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(false);
|
||||
if(lhs.y!=rhs.y)return(false);
|
||||
if(lhs.z!=rhs.z)return(false);
|
||||
return(true);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector3f &lhs,const Vector3f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(true);
|
||||
if(lhs.y!=rhs.y)return(true);
|
||||
if(lhs.z!=rhs.z)return(true);
|
||||
return(false);
|
||||
}
|
||||
|
||||
inline bool operator == (const Vector4f &lhs,const Vector4f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(false);
|
||||
if(lhs.y!=rhs.y)return(false);
|
||||
if(lhs.z!=rhs.z)return(false);
|
||||
if(lhs.w!=rhs.w)return(false);
|
||||
return(true);
|
||||
}
|
||||
|
||||
inline bool operator != (const Vector4f &lhs,const Vector4f &rhs)
|
||||
{
|
||||
if(lhs.x!=rhs.x)return(true);
|
||||
if(lhs.y!=rhs.y)return(true);
|
||||
if(lhs.z!=rhs.z)return(true);
|
||||
if(lhs.w!=rhs.w)return(true);
|
||||
return(false);
|
||||
}
|
||||
|
||||
inline void vec3to2(Vector2f &dst,const Vector3f &src)
|
||||
{
|
||||
dst.x=src.x;
|
||||
dst.y=src.y;
|
||||
}
|
||||
|
||||
inline Vector2f vec3to2(const Vector3f &src)
|
||||
{
|
||||
return Vector2f(src.x,src.y);
|
||||
}
|
||||
|
||||
inline void vec2to3(Vector3f &dst,const Vector2f &src,const float z)
|
||||
{
|
||||
dst.x=src.x;
|
||||
dst.y=src.y;
|
||||
dst.z=z;
|
||||
}
|
||||
|
||||
inline Vector3f vec2to3(const Vector2f &src,const float z)
|
||||
{
|
||||
return Vector3f(src.x,src.y,z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline T normalized(const T &v)
|
||||
{
|
||||
return v.Normalized();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline void normalize(T &v)
|
||||
{
|
||||
v.Normalize();
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline T cross(const T &v1,const T &v2)
|
||||
{
|
||||
return v1.Cross(v2);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline float dot(const T &v1,const T &v2)
|
||||
{
|
||||
return v1.Dot(v2);
|
||||
}
|
||||
|
||||
inline float ray_angle_cos(const Ray &ray,const vec &pos)
|
||||
{
|
||||
return ray.dir.Dot((pos-ray.pos).Normalized());
|
||||
}
|
||||
|
||||
inline float length_squared(const Vector2f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y);
|
||||
}
|
||||
|
||||
inline float length_squared_2d(const Vector3f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y);
|
||||
}
|
||||
|
||||
inline float length_squared(const Vector3f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
|
||||
}
|
||||
|
||||
inline float length_squared(const Vector4f &v)
|
||||
{
|
||||
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline float length(const T &v)
|
||||
{
|
||||
return sqrt(length_squared(v));
|
||||
}
|
||||
|
||||
inline float length_2d(const Vector3f &v)
|
||||
{
|
||||
return sqrt(length_squared_2d(v));
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length_squared(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
const float x = (v1.x - v2.x);
|
||||
const float y = (v1.y - v2.y);
|
||||
|
||||
return x*x + y*y;
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
return sqrt(length_squared(v1, v2));
|
||||
}
|
||||
|
||||
inline float length_squared(const Vector3f &v1, const Vector3f &v2)
|
||||
{
|
||||
const float x = (v1.x - v2.x);
|
||||
const float y = (v1.y - v2.y);
|
||||
const float z = (v1.z - v2.z);
|
||||
|
||||
return x*x + y*y + z*z;
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length_squared_2d(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
const float x = (v1.x - v2.x);
|
||||
const float y = (v1.y - v2.y);
|
||||
|
||||
return x*x + y*y;
|
||||
}
|
||||
|
||||
inline float length(const Vector3f &v1, const Vector3f &v2)
|
||||
{
|
||||
return sqrt(length_squared(v1, v2));
|
||||
}
|
||||
|
||||
template<typename T1, typename T2>
|
||||
inline float length_2d(const T1 &v1, const T2 &v2)
|
||||
{
|
||||
return sqrt(length_squared_2d(v1, v2));
|
||||
}
|
||||
|
||||
inline Vector2f to(const Vector2f &start, const Vector2f &end, float pos)
|
||||
{
|
||||
return Vector2f(start.x + (end.x - start.x)*pos,
|
||||
start.y + (end.y - start.y)*pos);
|
||||
}
|
||||
|
||||
inline Vector3f to(const Vector3f &start, const Vector3f &end, float pos)
|
||||
{
|
||||
return Vector3f(start.x + (end.x - start.x)*pos,
|
||||
start.y + (end.y - start.y)*pos,
|
||||
start.z + (end.z - start.z)*pos);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
inline void to_2d(T &result, const T &start, const T &end, float pos)
|
||||
{
|
||||
result.x = start.x + (end.x - start.x)*pos;
|
||||
result.y = start.y + (end.y - start.y)*pos;
|
||||
}
|
||||
|
||||
inline float ray_angle_cos(const Vector3f &ray_dir, const Vector3f &ray_pos, const Vector3f &pos)
|
||||
{
|
||||
return dot(ray_dir, normalized(pos - ray_pos));
|
||||
}
|
||||
|
||||
/**
|
||||
* 做一个2D旋转计算
|
||||
* @param result 结果
|
||||
* @param source 原始点坐标
|
||||
* @param center 圆心坐标
|
||||
* @param ang 旋转角度
|
||||
*/
|
||||
template<typename T1, typename T2, typename T3>
|
||||
inline void rotate2d(T1 &result, const T2 &source, const T3 ¢er, const double ang)
|
||||
{
|
||||
double as, ac;
|
||||
// double nx,ny;
|
||||
|
||||
// as=sin(ang*(HGL_PI/180.0f));
|
||||
// ac=cos(ang*(HGL_PI/180.0f));
|
||||
//sincos(ang*(HGL_PI/180.0f),&as,&ac); //在80x87指令上,sin/cos是一个指令同时得出sin和cos,所以可以这样做
|
||||
Lsincos(ang, as, ac); //低精度sin/cos计算
|
||||
|
||||
result.x = center.x + ((source.x - center.x)*ac - (source.y - center.y)*as);
|
||||
result.y = center.y + ((source.x - center.x)*as + (source.y - center.y)*ac);
|
||||
}
|
||||
}//namespace hgl
|
||||
#endif//HGL_ALGORITHM_MATH_VECTOR_INCLUDE
|
Loading…
x
Reference in New Issue
Block a user