#include #include #include #include #include namespace hgl { namespace graph { namespace { template struct GeometryCreater { SceneDB *db; vulkan::Material *mtl; const vulkan::VertexShaderModule *vsm=nullptr; vulkan::Renderable *render_obj=nullptr; int vertex_binding =-1; int color_binding =-1; int normal_binding =-1; int tangent_binding =-1; int texcoord_binding=-1; VERTEX_VB_FORMAT *vertex =nullptr; VB4f *color =nullptr; VB3f *normal =nullptr; VB3f *tangent =nullptr; VB2f *tex_coord =nullptr; vulkan::IndexBuffer *ibo=nullptr; public: GeometryCreater(SceneDB *sdb,vulkan::Material *m):db(sdb),mtl(m) { vsm=mtl->GetVertexShaderModule(); vertex_binding =vsm->GetStageInputBinding("Vertex"); color_binding =vsm->GetStageInputBinding("Color"); normal_binding =vsm->GetStageInputBinding("Normal"); tangent_binding =vsm->GetStageInputBinding("Tangent"); texcoord_binding=vsm->GetStageInputBinding("TexCoord"); } ~GeometryCreater() { if(render_obj) delete render_obj; } bool Init(uint vertices_number) { if(vertex_binding==-1)return(false); if(!vertices_number)return(false); render_obj=mtl->CreateRenderable(vertices_number); vertex =new VERTEX_VB_FORMAT(vertices_number); if(color_binding !=-1)color =new VB4f(vertices_number); if(normal_binding !=-1)normal =new VB3f(vertices_number); if(tangent_binding !=-1)tangent =new VB3f(vertices_number); if(texcoord_binding !=-1)tex_coord =new VB2f(vertices_number); return(true); } void WriteVertex (const float *v){if(vertex )vertex ->BufferData(v);} void WriteColor (const float *v){if(color )color ->BufferData(v);} void WriteNormal (const float *v){if(normal )normal ->BufferData(v);} void WriteTangent (const float *v){if(tangent )tangent ->BufferData(v);} void WriteTexCoord (const float *v){if(tex_coord )tex_coord ->BufferData(v);} VERTEX_VB_FORMAT * GetVertex (){return vertex; } VB4f * GetColor (){return color; } VB3f * GetNormal (){return normal; } VB3f * GetTangent (){return tangent; } VB2f * GetTexCoord (){return tex_coord; } float *GetVertexPointer (){return vertex ?(float *)vertex ->Begin():nullptr;} float *GetColorPointer (){return color ?(float *)color ->Begin():nullptr;} float *GetNormalPointer (){return normal ?(float *)normal ->Begin():nullptr;} float *GetTangentPointer (){return tangent ?(float *)tangent ->Begin():nullptr;} float *GetTexCoordPointer (){return tex_coord ?(float *)tex_coord ->Begin():nullptr;} uint16 *CreateIBO16(uint count,const uint16 *data=nullptr) { ibo=db->CreateIBO16(count,data); return (uint16 *)ibo->Map(); } uint32 *CreateIBO32(uint count,const uint32 *data=nullptr) { ibo=db->CreateIBO32(count,data); return (uint32 *)ibo->Map(); } private: void Finish(int binding,VertexBufferCreater *vb) { render_obj->Set(binding,db->CreateVBO(vb)); delete vb; } public: vulkan::Renderable *Finish() { if(vertex) { render_obj->SetBoundingBox(vertex->GetAABB()); Finish(vertex_binding,vertex); } if(color )Finish(color_binding, color); if(normal )Finish(normal_binding, normal); if(tangent )Finish(tangent_binding, tangent); if(tex_coord)Finish(texcoord_binding, tex_coord); if(ibo) { ibo->Unmap(); render_obj->Set(ibo); } vulkan::Renderable *result=render_obj; db->Add(render_obj); render_obj=nullptr; return result; } };//struct GeometryCreater using GeometryCreater3D=GeometryCreater; using GeometryCreater2D=GeometryCreater; }//namespace vulkan::Renderable *CreateRenderableRectangle(SceneDB *db,vulkan::Material *mtl,const RectangleCreateInfo *rci) { GeometryCreater2D gc(db,mtl); if(!gc.Init(4)) return(nullptr); VB2f *vertex=gc.GetVertex(); vertex->WriteRectFan(rci->scope); return gc.Finish(); } vulkan::Renderable *CreateRenderableRoundRectangle(SceneDB *db,vulkan::Material *mtl,const RoundRectangleCreateInfo *rci) { GeometryCreater2D gc(db,mtl); if(rci->radius==0||rci->round_per<=1) //这是要画矩形 { if(!gc.Init(4)) return(nullptr); VB2f *vertex=gc.GetVertex(); vertex->WriteRectFan(rci->scope); } else { float radius=rci->radius; if(radius>rci->scope.GetWidth()/2.0f)radius=rci->scope.GetWidth()/2.0f; if(radius>rci->scope.GetHeight()/2.0f)radius=rci->scope.GetHeight()/2.0f; if(!gc.Init(rci->round_per*4)) return(nullptr); VB2f *vertex=gc.GetVertex(); vec2 *coord=new vec2[rci->round_per]; float l=rci->scope.GetLeft(), r=rci->scope.GetRight(), t=rci->scope.GetTop(), b=rci->scope.GetBottom(); for(uint i=0;iround_per;i++) { float ang=float(i)/float(rci->round_per-1)*90.0f; float x=sin(hgl_ang2rad(ang))*radius; float y=cos(hgl_ang2rad(ang))*radius; coord[i].x=x; coord[i].y=y; //右上角 vertex->Write(r-radius+x, t+radius-y); } //右下角 for(uint i=0;iround_per;i++) { vertex->Write(r-radius+coord[rci->round_per-1-i].x, b-radius+coord[rci->round_per-1-i].y); } //左下角 for(uint i=0;iround_per;i++) { vertex->Write(l+radius-coord[i].x, b-radius+coord[i].y); } //左上角 for(uint i=0;iround_per;i++) { vertex->Write(l+radius-coord[rci->round_per-1-i].x, t+radius-coord[rci->round_per-1-i].y); } delete[] coord; } return gc.Finish(); } vulkan::Renderable *CreateRenderableCircle(SceneDB *db,vulkan::Material *mtl,const CircleCreateInfo *cci) { GeometryCreater2D gc(db,mtl); if(!gc.Init(cci->field_count+2)) return(nullptr); VB2f *vertex=gc.GetVertex(); vertex->Write(cci->center.x,cci->center.y); for(uint i=0;i<=cci->field_count;i++) { float ang=float(i)/float(cci->field_count)*360.0f; float x=cci->center.x+sin(hgl_ang2rad(ang))*cci->radius.x; float y=cci->center.y+cos(hgl_ang2rad(ang))*cci->radius.y; vertex->Write(x,y); } return gc.Finish(); } vulkan::Renderable *CreateRenderablePlaneGrid(SceneDB *db,vulkan::Material *mtl,const PlaneGridCreateInfo *pgci) { GeometryCreater3D gc(db,mtl); if(!gc.Init(((pgci->step.u+1)+(pgci->step.v+1))*2)) return(nullptr); VB3f *vertex=gc.GetVertex(); for(uint row=0;row<=pgci->step.u;row++) { float pos=float(row)/float(pgci->step.u); vertex->WriteLine( to(pgci->coord[0],pgci->coord[1],pos), to(pgci->coord[3],pgci->coord[2],pos)); } for(uint col=0;col<=pgci->step.v;col++) { float pos=float(col)/float(pgci->step.v); vertex->WriteLine(to(pgci->coord[1],pgci->coord[2],pos), to(pgci->coord[0],pgci->coord[3],pos)); } VB4f *color=gc.GetColor(); if(color) { for(uint row=0;row<=pgci->step.u;row++) { if((row%pgci->side_step.u)==0) color->Fill(pgci->side_color,2); else color->Fill(pgci->color,2); } for(uint col=0;col<=pgci->step.v;col++) { if((col%pgci->side_step.v)==0) color->Fill(pgci->side_color,2); else color->Fill(pgci->color,2); } } return gc.Finish(); } vulkan::Renderable *CreateRenderablePlane(SceneDB *db,vulkan::Material *mtl,const PlaneCreateInfo *pci) { const float xy_vertices [] = { -0.5f,-0.5f,0.0f, +0.5f,-0.5f,0.0f, -0.5f,+0.5f,0.0f, +0.5f,+0.5f,0.0f}; float xy_tex_coord[] = { 0.0f, 0.0f, 1.0f,0.0f, 0.0f,1.0f, 1.0f, 1.0f}; const Vector3f xy_normal(0.0f,0.0f,1.0f); const Vector3f xy_tangent(1.0f,0.0f,0.0f); GeometryCreater3D gc(db,mtl); if(!gc.Init(4)) return(nullptr); gc.WriteVertex(xy_vertices); { VB3f *normal=gc.GetNormal(); if(normal)normal->Fill(xy_normal,4); } { VB3f *tangent=gc.GetTangent(); tangent->Fill(xy_tangent,4); } { VB2f *tex_coord=gc.GetTexCoord(); if(tex_coord) { xy_tex_coord[2]=xy_tex_coord[6]=pci->tile.x; xy_tex_coord[5]=xy_tex_coord[7]=pci->tile.y; tex_coord->BufferData(xy_tex_coord); } } return gc.Finish(); } vulkan::Renderable *CreateRenderableCube(SceneDB *db,vulkan::Material *mtl,const CubeCreateInfo *cci) { // Points of a cube. /* 4 5 */ const float points[]={ -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, +0.5f, -0.5f, -0.5f, -0.5f, +0.5f, -0.5f, -0.5f, +0.5f, +0.5f, /* *------------* */ +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f, /* /| /| */ -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f, -0.5f, -0.5f, -0.5f, +0.5f, /* 0/ | 1/ | */ -0.5f, +0.5f, +0.5f, -0.5f, +0.5f, -0.5f, +0.5f, -0.5f, -0.5f, +0.5f, -0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, +0.5f, -0.5f }; /* *--+---------* | */ // Normals of a cube. /* | | | | */ const float normals[]={ +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, /* | 7| | 6| */ +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, -1.0f, /* | *---------+--* */ +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, /* | / | / */ -1.0f, +0.0f, +0.0f, -1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f, +1.0f, +0.0f, +0.0f }; /* |/ 2|/ */ // The associated indices. /* 3*------------* */ const uint16 indices[]={ 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; const float tangents[] = { +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, +1.0f, 0.0f, 0.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,+1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f, 0.0f, 0.0f,-1.0f }; const float tex_coords[] ={ 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f }; GeometryCreater3D gc(db,mtl); if(!gc.Init(24)) return(nullptr); if(cci->center ==Vector3f(0,0,0) &&cci->size ==Vector3f(1,1,1)) { gc.WriteVertex(points); } else { const float *sp=points; float *vp=gc.GetVertexPointer(); for(uint i=0;i<24;i++) { *vp=cci->center.x+(*sp)*cci->size.x; ++vp;++sp; *vp=cci->center.y+(*sp)*cci->size.y; ++vp;++sp; *vp=cci->center.z+(*sp)*cci->size.z; ++vp;++sp; } } gc.WriteNormal(normals); gc.WriteTangent(tangents); float *tcp=gc.GetTexCoordPointer(); if(tcp) { if(cci->tile.x==1&&cci->tile.y==1) { gc.WriteTexCoord(tex_coords); } else { const float *tc=tex_coords; for(uint i=0;i<24;i++) { *tcp=(*tc)*cci->tile.x;++tc;++tcp; *tcp=(*tc)*cci->tile.y;++tc;++tcp; } } } gc.CreateIBO16(6*2*3,indices); return gc.Finish(); } template void CreateSphereIndices(T *tp,uint numberParallels,const uint numberSlices) { for (uint i = 0; i < numberParallels; i++) { for (uint j = 0; j < numberSlices; j++) { *tp= i * (numberSlices + 1) + j; ++tp; *tp=(i + 1) * (numberSlices + 1) + j; ++tp; *tp=(i + 1) * (numberSlices + 1) + (j + 1); ++tp; *tp= i * (numberSlices + 1) + j; ++tp; *tp=(i + 1) * (numberSlices + 1) + (j + 1); ++tp; *tp= i * (numberSlices + 1) + (j + 1); ++tp; } } } namespace { constexpr uint GLUS_VERTICES_FACTOR =4; constexpr uint GLUS_VERTICES_DIVISOR=4; constexpr uint GLUS_MAX_VERTICES =1048576; constexpr uint GLUS_MAX_INDICES =GLUS_MAX_VERTICES*GLUS_VERTICES_FACTOR; void glusQuaternionRotateRyf(float quaternion[4], const float angle) { float halfAngleRadian = hgl_ang2rad(angle) * 0.5f; quaternion[0] = 0.0f; quaternion[1] = sinf(halfAngleRadian); quaternion[2] = 0.0f; quaternion[3] = cosf(halfAngleRadian); } void glusQuaternionRotateRzf(float quaternion[4], const float angle) { float halfAngleRadian = hgl_ang2rad(angle) * 0.5f; quaternion[0] = 0.0f; quaternion[1] = 0.0f; quaternion[2] = sinf(halfAngleRadian); quaternion[3] = cosf(halfAngleRadian); } void glusQuaternionGetMatrix4x4f(float matrix[16], const float quaternion[4]) { float x = quaternion[0]; float y = quaternion[1]; float z = quaternion[2]; float w = quaternion[3]; matrix[0] = 1.0f - 2.0f * y * y - 2.0f * z * z; matrix[1] = 2.0f * x * y + 2.0f * w * z; matrix[2] = 2.0f * x * z - 2.0f * w * y; matrix[3] = 0.0f; matrix[4] = 2.0f * x * y - 2.0f * w * z; matrix[5] = 1.0f - 2.0f * x * x - 2.0f * z * z; matrix[6] = 2.0f * y * z + 2.0f * w * x; matrix[7] = 0.0f; matrix[8] = 2.0f * x * z + 2.0f * w * y; matrix[9] = 2.0f * y * z - 2.0f * w * x; matrix[10] = 1.0f - 2.0f * x * x - 2.0f * y * y; matrix[11] = 0.0f; matrix[12] = 0.0f; matrix[13] = 0.0f; matrix[14] = 0.0f; matrix[15] = 1.0f; } void glusMatrix4x4MultiplyVector3f(float result[3], const float matrix[16], const float vector[3]) { int i; float temp[3]; for (i = 0; i < 3; i++) { temp[i] = matrix[i] * vector[0] + matrix[4 + i] * vector[1] + matrix[8 + i] * vector[2]; } for (i = 0; i < 3; i++) { result[i] = temp[i]; } } }//namespace /** * 创建一个球体的可渲染数据,球心为0,0,0,半径为1 * @param numberSlices 切片数 * @return 可渲染数据 */ vulkan::Renderable *CreateRenderableSphere(SceneDB *db,vulkan::Material *mtl,const uint numberSlices) { GeometryCreater3D gc(db,mtl); uint numberParallels = (numberSlices+1) / 2; uint numberVertices = (numberParallels + 1) * (numberSlices + 1); uint numberIndices = numberParallels * numberSlices * 6; const double angleStep = double(2.0f * HGL_PI) / ((double) numberSlices); // used later to help us calculating tangents vectors float helpVector[3] = { 1.0f, 0.0f, 0.0f }; float helpQuaternion[4]; float helpMatrix[16]; float tex_x; if(!gc.Init(numberVertices)) return(nullptr); float *vp=gc.GetVertexPointer(); float *np=gc.GetNormalPointer(); float *tp=gc.GetTangentPointer(); float *tc=gc.GetTexCoordPointer(); for (uint i = 0; i < numberParallels + 1; i++) { for (uint j = 0; j < numberSlices + 1; j++) { float x=sin(angleStep * (double) i) * sin(angleStep * (double) j); float y=sin(angleStep * (double) i) * cos(angleStep * (double) j); float z=cos(angleStep * (double) i); *vp=x;++vp; *vp=y;++vp; *vp=z;++vp; if(np) { *np=x;++np; *np=y;++np; *np=z;++np; } if(tc) { tex_x=(float) j / (float) numberSlices; *tc=tex_x;++tc; *tc=1.0f - (float) i / (float) numberParallels;++tc; if(tp) { // use quaternion to get the tangent vector glusQuaternionRotateRyf(helpQuaternion, 360.0f * tex_x); glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion); glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector); tp+=3; } } } } if(numberVertices<=0xffff) CreateSphereIndices(gc.CreateIBO16(numberIndices),numberParallels,numberSlices); else CreateSphereIndices(gc.CreateIBO32(numberIndices),numberParallels,numberSlices); return gc.Finish(); } vulkan::Renderable *CreateRenderableDome(SceneDB *db,vulkan::Material *mtl,const DomeCreateInfo *dci) { GeometryCreater3D gc(db,mtl); uint i, j; uint numberParallels = dci->numberSlices / 4; uint numberVertices = (numberParallels + 1) * (dci->numberSlices + 1); uint numberIndices = numberParallels * dci->numberSlices * 6; float angleStep = (2.0f * HGL_PI) / ((float) dci->numberSlices); // used later to help us calculating tangents vectors float helpVector[3] = { 1.0f, 0.0f, 0.0f }; float helpQuaternion[4]; float helpMatrix[16]; float tex_x; if (dci->numberSlices < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES) return nullptr; if(!gc.Init(numberVertices)) return(nullptr); float *vp=gc.GetVertexPointer(); float *np=gc.GetNormalPointer(); float *tp=gc.GetTangentPointer(); float *tc=gc.GetTexCoordPointer(); for (i = 0; i < numberParallels + 1; i++) { for (j = 0; j < dci->numberSlices + 1; j++) { uint vertexIndex = (i * (dci->numberSlices + 1) + j) * 4; uint normalIndex = (i * (dci->numberSlices + 1) + j) * 3; uint tangentIndex = (i * (dci->numberSlices + 1) + j) * 3; uint texCoordsIndex = (i * (dci->numberSlices + 1) + j) * 2; float x=dci->radius * sinf(angleStep * (float) i) * sinf(angleStep * (float) j); float y=dci->radius * sinf(angleStep * (float) i) * cosf(angleStep * (float) j); float z=dci->radius * cosf(angleStep * (float) i); *vp=x;++vp; *vp=y;++vp; *vp=z;++vp; if(np) { *np = x / dci->radius;++np; *np = y / dci->radius;++np; *np = z / dci->radius;++np; } if(tc) { *tc = tex_x=(float) j / (float) dci->numberSlices;++tc; *tc = 1.0f - (float) i / (float) numberParallels;++tc; if(tp) { // use quaternion to get the tangent vector glusQuaternionRotateRyf(helpQuaternion, 360.0f * tex_x); glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion); glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector); tp+=3; } } } } if(numberVertices<=0xffff) CreateSphereIndices(gc.CreateIBO16(numberIndices),numberParallels,dci->numberSlices); else CreateSphereIndices(gc.CreateIBO32(numberIndices),numberParallels,dci->numberSlices); return gc.Finish(); } namespace { template void CreateTorusIndices(T *tp,uint numberSlices,uint numberStacks) { // loop counters uint sideCount, faceCount; // used to generate the indices uint v0, v1, v2, v3; for (sideCount = 0; sideCount < numberSlices; ++sideCount) { for (faceCount = 0; faceCount < numberStacks; ++faceCount) { // get the number of the vertices for a face of the torus. They must be < numVertices v0 = ((sideCount * (numberStacks + 1)) + faceCount); v1 = (((sideCount + 1) * (numberStacks + 1)) + faceCount); v2 = (((sideCount + 1) * (numberStacks + 1)) + (faceCount + 1)); v3 = ((sideCount * (numberStacks + 1)) + (faceCount + 1)); // first triangle of the face, counter clock wise winding *tp = v0; ++tp; *tp = v1; ++tp; *tp = v2; ++tp; // second triangle of the face, counter clock wise winding *tp = v0; ++tp; *tp = v2; ++tp; *tp = v3; ++tp; } } } }//namespace vulkan::Renderable *CreateRenderableTorus(SceneDB *db,vulkan::Material *mtl,const TorusCreateInfo *tci) { GeometryCreater3D gc(db,mtl); // s, t = parametric values of the equations, in the range [0,1] float s = 0; float t = 0; // sIncr, tIncr are increment values aplied to s and t on each loop iteration to generate the torus float sIncr; float tIncr; // to store precomputed sin and cos values float cos2PIs, sin2PIs, cos2PIt, sin2PIt; uint sideCount,faceCount; uint numberVertices; uint numberIndices; // used later to help us calculating tangents vectors float helpVector[3] = { 0.0f, 1.0f, 0.0f }; float helpQuaternion[4]; float helpMatrix[16]; float torusRadius = (tci->outerRadius - tci->innerRadius) / 2.0f; float centerRadius = tci->outerRadius - torusRadius; numberVertices = (tci->numberStacks + 1) * (tci->numberSlices + 1); numberIndices = tci->numberStacks * tci->numberSlices * 2 * 3; // 2 triangles per face * 3 indices per triangle if (tci->numberSlices < 3 || tci->numberStacks < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES) return(nullptr); sIncr = 1.0f / (float) tci->numberSlices; tIncr = 1.0f / (float) tci->numberStacks; if(!gc.Init(numberVertices)) return(nullptr); float *vp=gc.GetVertexPointer(); float *np=gc.GetNormalPointer(); float *tp=gc.GetTangentPointer(); float *tc=gc.GetTexCoordPointer(); // generate vertices and its attributes for (sideCount = 0; sideCount <= tci->numberSlices; ++sideCount, s += sIncr) { // precompute some values cos2PIs = (float) cosf(2.0f * HGL_PI * s); sin2PIs = (float) sinf(2.0f * HGL_PI * s); t = 0.0f; for (faceCount = 0; faceCount <= tci->numberStacks; ++faceCount, t += tIncr) { // precompute some values cos2PIt = (float) cosf(2.0f * HGL_PI * t); sin2PIt = (float) sinf(2.0f * HGL_PI * t); // generate vertex and stores it in the right position *vp = (centerRadius + torusRadius * cos2PIt) * cos2PIs; ++vp; *vp = (centerRadius + torusRadius * cos2PIt) * sin2PIs; ++vp; *vp = torusRadius * sin2PIt; ++vp; if(np) { // generate normal and stores it in the right position // NOTE: cos (2PIx) = cos (x) and sin (2PIx) = sin (x) so, we can use this formula // normal = {cos(2PIs)cos(2PIt) , sin(2PIs)cos(2PIt) ,sin(2PIt)} *np = cos2PIs * cos2PIt; ++np; *np = sin2PIs * cos2PIt; ++np; *np = sin2PIt; ++np; } if(tc) { // generate texture coordinates and stores it in the right position *tc = s; ++tc; *tc = t; ++tc; } if(tp) { // use quaternion to get the tangent vector glusQuaternionRotateRzf(helpQuaternion, 360.0f * s); glusQuaternionGetMatrix4x4f(helpMatrix, helpQuaternion); glusMatrix4x4MultiplyVector3f(tp, helpMatrix, helpVector); tp+=3; } } } if(numberVertices<=0xffff) CreateTorusIndices(gc.CreateIBO16(numberIndices),tci->numberSlices,tci->numberStacks); else CreateTorusIndices(gc.CreateIBO32(numberIndices),tci->numberSlices,tci->numberStacks); return gc.Finish(); } namespace { template void CreateCylinderIndices(T *tp,const uint numberSlices) { uint i; T centerIndex = 0; T indexCounter = 1; for (i = 0; i < numberSlices; i++) { *tp = centerIndex; ++tp; *tp = indexCounter + 1; ++tp; *tp = indexCounter; ++tp; indexCounter++; } indexCounter++; // Top centerIndex = indexCounter; indexCounter++; for (i = 0; i < numberSlices; i++) { *tp = centerIndex; ++tp; *tp = indexCounter; ++tp; *tp = indexCounter + 1; ++tp; indexCounter++; } indexCounter++; // Sides for (i = 0; i < numberSlices; i++) { *tp = indexCounter; ++tp; *tp = indexCounter + 2; ++tp; *tp = indexCounter + 1; ++tp; *tp = indexCounter + 2; ++tp; *tp = indexCounter + 3; ++tp; *tp = indexCounter + 1; ++tp; indexCounter += 2; } } }//namespace vulkan::Renderable *CreateRenderableCylinder(SceneDB *db,vulkan::Material *mtl,const CylinderCreateInfo *cci) { uint numberIndices = cci->numberSlices * 3 * 2 + cci->numberSlices * 6; if(numberIndices<=0) return(nullptr); GeometryCreater3D gc(db,mtl); uint numberVertices = (cci->numberSlices + 2) * 2 + (cci->numberSlices + 1) * 2; if(!gc.Init(numberVertices)) return(nullptr); float angleStep = (2.0f * HGL_PI) / ((float) cci->numberSlices); if (cci->numberSlices < 3 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES) return nullptr; float *vp=gc.GetVertexPointer(); float *np=gc.GetNormalPointer(); float *tp=gc.GetTangentPointer(); float *tc=gc.GetTexCoordPointer(); *vp = 0.0f; ++vp; *vp = 0.0f; ++vp; *vp = -cci->halfExtend; ++vp; if(np) { *np = 0.0f; ++np; *np = 0.0f; ++np; *np = -1.0f; ++np; } if(tp) { *tp = 0.0f; ++tp; *tp = 1.0f; ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = 0.0f; ++tc; *tc = 0.0f; ++tc; } for(uint i = 0; i < cci->numberSlices + 1; i++) { float currentAngle = angleStep * (float)i; *vp = cosf(currentAngle) * cci->radius;++vp; *vp = -sinf(currentAngle) * cci->radius;++vp; *vp = -cci->halfExtend; ++vp; if(np) { *np = 0.0f; ++np; *np = 0.0f; ++np; *np = -1.0f; ++np; } if(tp) { *tp = sinf(currentAngle); ++tp; *tp = cosf(currentAngle); ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = 0.0f; ++tc; *tc = 0.0f; ++tc; } } *vp = 0.0f; ++vp; *vp = 0.0f; ++vp; *vp = cci->halfExtend; ++vp; if(np) { *np = 0.0f; ++np; *np = 0.0f; ++np; *np = 1.0f; ++np; } if(tp) { *tp = 0.0f; ++tp; *tp = -1.0f; ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = 1.0f; ++tc; *tc = 1.0f; ++tc; } for(uint i = 0; i < cci->numberSlices + 1; i++) { float currentAngle = angleStep * (float)i; *vp = cosf(currentAngle) * cci->radius;++vp; *vp = -sinf(currentAngle) * cci->radius;++vp; *vp = cci->halfExtend; ++vp; if(np) { *np = 0.0f; ++np; *np = 0.0f; ++np; *np = 1.0f; ++np; } if(tp) { *tp = -sinf(currentAngle); ++tp; *tp = -cosf(currentAngle); ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = 1.0f; ++tc; *tc = 1.0f; ++tc; } } for(uint i = 0; i < cci->numberSlices + 1; i++) { float currentAngle = angleStep * (float)i; float sign = -1.0f; for (uint j = 0; j < 2; j++) { *vp = cosf(currentAngle) * cci->radius; ++vp; *vp = -sinf(currentAngle) * cci->radius; ++vp; *vp = cci->halfExtend * sign; ++vp; if(np) { *np = cosf(currentAngle); ++np; *np = -sinf(currentAngle); ++np; *np = 0.0f; ++np; } if(tp) { *tp = -sinf(currentAngle); ++tp; *tp = -cosf(currentAngle); ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = (float)i / (float)cci->numberSlices; ++tc; *tc = (sign + 1.0f) / 2.0f; ++tc; } sign = 1.0f; } } if(numberVertices<=0xffff) CreateCylinderIndices(gc.CreateIBO16(numberIndices),cci->numberSlices); else CreateCylinderIndices(gc.CreateIBO32(numberIndices),cci->numberSlices); return gc.Finish(); } namespace { template void CreateConeIndices(T *tp,const uint numberSlices,const uint numberStacks) { // Bottom uint centerIndex = 0; uint indexCounter = 1; uint i,j; for (i = 0; i < numberSlices; i++) { *tp = centerIndex; ++tp; *tp = indexCounter + 1; ++tp; *tp = indexCounter; ++tp; indexCounter++; } indexCounter++; // Sides for (j = 0; j < numberStacks; j++) { for (i = 0; i < numberSlices; i++) { *tp = indexCounter; ++tp; *tp = indexCounter + 1; ++tp; *tp = indexCounter + numberSlices + 1; ++tp; *tp = indexCounter + 1; ++tp; *tp = indexCounter + numberSlices + 2; ++tp; *tp = indexCounter + numberSlices + 1; ++tp; indexCounter++; } indexCounter++; } } }//namespace vulkan::Renderable *CreateRenderableCone(SceneDB *db,vulkan::Material *mtl,const ConeCreateInfo *cci) { GeometryCreater3D gc(db,mtl); uint i, j; uint numberVertices = (cci->numberSlices + 2) + (cci->numberSlices + 1) * (cci->numberStacks + 1); if(!gc.Init(numberVertices)) return(nullptr); uint numberIndices = cci->numberSlices * 3 + cci->numberSlices * 6 * cci->numberStacks; float angleStep = (2.0f * HGL_PI) / ((float) cci->numberSlices); float h = 2.0f * cci->halfExtend; float r = cci->radius; float l = sqrtf(h*h + r*r); if (cci->numberSlices < 3 || cci->numberStacks < 1 || numberVertices > GLUS_MAX_VERTICES || numberIndices > GLUS_MAX_INDICES) return nullptr; float *vp=gc.GetVertexPointer(); float *np=gc.GetNormalPointer(); float *tp=gc.GetTangentPointer(); float *tc=gc.GetTexCoordPointer(); *vp = 0.0f; ++vp; *vp = 0.0f; ++vp; *vp = -cci->halfExtend; ++vp; if(np) { *np = 0.0f;++np; *np = 0.0f;++np; *np = -1.0f;++np; } if(tp) { *tp = 0.0f; ++tp; *tp = 1.0f; ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = 0.0f; ++tc; *tc = 0.0f; ++tc; } for (i = 0; i < cci->numberSlices + 1; i++) { float currentAngle = angleStep * (float)i; *vp = cosf(currentAngle) * cci->radius;++vp; *vp = -sinf(currentAngle) * cci->radius;++vp; *vp = -cci->halfExtend; ++vp; if(np) { *np = 0.0f;++np; *np = 0.0f;++np; *np = -1.0f;++np; } if(tp) { *tp = sinf(currentAngle); ++tp; *tp = cosf(currentAngle); ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = 0.0f; ++tc; *tc = 0.0f; ++tc; } } for (j = 0; j < cci->numberStacks + 1; j++) { float level = (float)j / (float)cci->numberStacks; for (i = 0; i < cci->numberSlices + 1; i++) { float currentAngle = angleStep * (float)i; *vp = cosf(currentAngle) * cci->radius * (1.0f - level); ++vp; *vp = -sinf(currentAngle) * cci->radius * (1.0f - level); ++vp; *vp = -cci->halfExtend + 2.0f * cci->halfExtend * level; ++vp; if(np) { *np = h / l * cosf(currentAngle); ++np; *np = h / l * -sinf(currentAngle); ++np; *np = r / l; ++np; } if(tp) { *tp = -sinf(currentAngle); ++tp; *tp = -cosf(currentAngle); ++tp; *tp = 0.0f; ++tp; } if(tc) { *tc = (float)i / (float)cci->numberSlices; ++tc; *tc = level; ++tc; } } } if(numberVertices<=0xffff) CreateConeIndices(gc.CreateIBO16(numberIndices),cci->numberSlices,cci->numberStacks); else CreateConeIndices(gc.CreateIBO32(numberIndices),cci->numberSlices,cci->numberStacks); return gc.Finish(); } vulkan::Renderable *CreateRenderableAxis(SceneDB *db,vulkan::Material *mtl,const AxisCreateInfo *aci) { GeometryCreater3D gc(db,mtl); if(!gc.Init(6)) return(false); VB3f *vertex=gc.GetVertex(); VB4f *color=gc.GetColor(); if(!vertex||!color) return(nullptr); vertex->Write(aci->root);color->Write(aci->color[0]); vertex->Write(aci->root.x+aci->size[0],aci->root.y,aci->root.z);color->Write(aci->color[0]); vertex->Write(aci->root);color->Write(aci->color[1]); vertex->Write(aci->root.x,aci->root.y+aci->size[1],aci->root.z);color->Write(aci->color[1]); vertex->Write(aci->root);color->Write(aci->color[2]); vertex->Write(aci->root.x,aci->root.y,aci->root.z+aci->size[2]);color->Write(aci->color[2]); return gc.Finish(); } vulkan::Renderable *CreateRenderableBoundingBox(SceneDB *db,vulkan::Material *mtl,const CubeCreateInfo *cci) { // Points of a cube. /* 4 5 */ const float points[]={ -0.5,-0.5, 0.5, 0.5,-0.5,0.5, 0.5,-0.5,-0.5, -0.5,-0.5,-0.5, /* *------------* */ -0.5, 0.5, 0.5, 0.5, 0.5,0.5, 0.5, 0.5,-0.5, -0.5, 0.5,-0.5}; /* /| /| */ /* 0/ | 1/ | */ /* *--+---------* | */ /* | | | | */ /* | 7| | 6| */ /* | *---------+--* */ /* | / | / */ /* |/ 2|/ */ /* 3*------------* */ const uint16 indices[]= { 0,1, 1,2, 2,3, 3,0, 4,5, 5,6, 6,7, 7,4, 0,4, 1,5, 2,6, 3,7 }; GeometryCreater3D gc(db,mtl); if(!gc.Init(8)) return(false); VB3f *vertex=gc.GetVertex(); if(!vertex)return(nullptr); if(cci->center ==Vector3f(0,0,0) &&cci->size ==Vector3f(1,1,1)) { gc.WriteVertex(points); } else { const float *sp=points; float *vp=gc.GetVertexPointer(); for(uint i=0;i<8;i++) { *vp=cci->center.x+(*sp)*cci->size.x; ++vp;++sp; *vp=cci->center.y+(*sp)*cci->size.y; ++vp;++sp; *vp=cci->center.z+(*sp)*cci->size.z; ++vp;++sp; } } gc.CreateIBO16(24,indices); return gc.Finish(); } }//namespace graph }//namespace hgl