#include "NvTriStripObjects.h" #include "NvTriStrip.h" namespace NvTriStrip { //////////////////////////////////////////////////////////////////////////////////////// //private data static unsigned int cacheSize = CACHESIZE_GEFORCE3_6; static bool bStitchStrips = true; static unsigned int minStripSize = 0; static bool bListsOnly = false; static unsigned int restartVal = 0; static bool bRestart = false; void EnableRestart(const unsigned int _restartVal) { bRestart = true; restartVal = _restartVal; } void DisableRestart() { bRestart = false; } //////////////////////////////////////////////////////////////////////////////////////// // SetListsOnly() // // If set to true, will return an optimized list, with no strips at all. // // Default value: false // void SetListsOnly(const bool _bListsOnly) { bListsOnly = _bListsOnly; } //////////////////////////////////////////////////////////////////////////////////////// // SetCacheSize() // // Sets the cache size which the stripfier uses to optimize the data. // Controls the length of the generated individual strips. // This is the "actual" cache size, so 24 for GeForce3 and 16 for GeForce1/2 // You may want to play around with this number to tweak performance. // // Default value: 16 // void SetCacheSize(const unsigned int _cacheSize) { cacheSize = _cacheSize; } //////////////////////////////////////////////////////////////////////////////////////// // SetStitchStrips() // // bool to indicate whether to stitch together strips into one huge strip or not. // If set to true, you'll get back one huge strip stitched together using degenerate // triangles. // If set to false, you'll get back a large number of separate strips. // // Default value: true // void SetStitchStrips(const bool _bStitchStrips) { bStitchStrips = _bStitchStrips; } //////////////////////////////////////////////////////////////////////////////////////// // SetMinStripSize() // // Sets the minimum acceptable size for a strip, in triangles. // All strips generated which are shorter than this will be thrown into one big, separate list. // // Default value: 0 // void SetMinStripSize(const unsigned int _minStripSize) { minStripSize = _minStripSize; } //////////////////////////////////////////////////////////////////////////////////////// //Cleanup strips / faces, used by generatestrips void Cleanup(NvStripInfoVec& tempStrips, NvFaceInfoVec& tempFaces) { int i,j; //delete strips for(i = 0; i < tempStrips.size(); i++) { for(j = 0; j < tempStrips[i]->m_faces.size(); j++) { delete tempStrips[i]->m_faces[j]; tempStrips[i]->m_faces[j] = nullptr; } tempStrips[i]->m_faces.resize(0); delete tempStrips[i]; tempStrips[i] = nullptr; } //delete faces for(i = 0; i < tempFaces.size(); i++) { delete tempFaces[i]; tempFaces[i] = nullptr; } } //////////////////////////////////////////////////////////////////////////////////////// //SameTriangle() // //Returns true if the two triangles defined by firstTri and secondTri are the same // The "same" is defined in this case as having the same indices with the same winding order // bool SameTriangle(unsigned short firstTri0, unsigned short firstTri1, unsigned short firstTri2, unsigned short secondTri0, unsigned short secondTri1, unsigned short secondTri2) { bool isSame = false; if (firstTri0 == secondTri0) { if (firstTri1 == secondTri1) { if (firstTri2 == secondTri2) isSame = true; } } else if (firstTri0 == secondTri1) { if (firstTri1 == secondTri2) { if (firstTri2 == secondTri0) isSame = true; } } else if (firstTri0 == secondTri2) { if (firstTri1 == secondTri0) { if (firstTri2 == secondTri1) isSame = true; } } return isSame; } bool TestTriangle(const unsigned short v0, const unsigned short v1, const unsigned short v2, const std::vector* in_bins, const int NUMBINS) { //hash this triangle bool isLegit = false; int ctr = v0 % NUMBINS; for (int k = 0; k < in_bins[ctr].size(); ++k) { //check triangles in this bin if (SameTriangle(in_bins[ctr][k].m_v0, in_bins[ctr][k].m_v1, in_bins[ctr][k].m_v2, v0, v1, v2)) { isLegit = true; break; } } if (!isLegit) { ctr = v1 % NUMBINS; for (int k = 0; k < in_bins[ctr].size(); ++k) { //check triangles in this bin if (SameTriangle(in_bins[ctr][k].m_v0, in_bins[ctr][k].m_v1, in_bins[ctr][k].m_v2, v0, v1, v2)) { isLegit = true; break; } } if (!isLegit) { ctr = v2 % NUMBINS; for (int k = 0; k < in_bins[ctr].size(); ++k) { //check triangles in this bin if (SameTriangle(in_bins[ctr][k].m_v0, in_bins[ctr][k].m_v1, in_bins[ctr][k].m_v2, v0, v1, v2)) { isLegit = true; break; } } } } return isLegit; } //////////////////////////////////////////////////////////////////////////////////////// // GenerateStrips() // // in_indices: input index list, the indices you would use to render // in_numIndices: number of entries in in_indices // primGroups: array of optimized/stripified PrimitiveGroups // numGroups: number of groups returned // // Be sure to call delete[] on the returned primGroups to avoid leaking mem // bool GenerateStrips(const unsigned short* in_indices, const unsigned int in_numIndices, PrimitiveGroup** primGroups, unsigned short* numGroups, bool validateEnabled) { //put data in format that the stripifier likes WordVec tempIndices; tempIndices.resize(in_numIndices); unsigned short maxIndex = 0; unsigned short minIndex = 0xFFFF; for(int i = 0; i < in_numIndices; i++) { tempIndices[i] = in_indices[i]; if (in_indices[i] > maxIndex) maxIndex = in_indices[i]; if (in_indices[i] < minIndex) minIndex = in_indices[i]; } NvStripInfoVec tempStrips; NvFaceInfoVec tempFaces; NvStripifier stripifier; //do actual stripification stripifier.Stripify(tempIndices, cacheSize, minStripSize, maxIndex, tempStrips, tempFaces); //stitch strips together IntVec stripIndices; unsigned int numSeparateStrips = 0; if(bListsOnly) { //if we're outputting only lists, we're done *numGroups = 1; (*primGroups) = new PrimitiveGroup[*numGroups]; PrimitiveGroup* primGroupArray = *primGroups; //count the total number of indices unsigned int numIndices = 0; for(int i = 0; i < tempStrips.size(); i++) { numIndices += tempStrips[i]->m_faces.size() * 3; } //add in the list numIndices += tempFaces.size() * 3; primGroupArray[0].type = PT_LIST; primGroupArray[0].numIndices = numIndices; primGroupArray[0].indices = new unsigned short[numIndices]; //do strips unsigned int indexCtr = 0; for(int i = 0; i < tempStrips.size(); i++) { for(int j = 0; j < tempStrips[i]->m_faces.size(); j++) { //degenerates are of no use with lists if(!NvStripifier::IsDegenerate(tempStrips[i]->m_faces[j])) { primGroupArray[0].indices[indexCtr++] = tempStrips[i]->m_faces[j]->m_v0; primGroupArray[0].indices[indexCtr++] = tempStrips[i]->m_faces[j]->m_v1; primGroupArray[0].indices[indexCtr++] = tempStrips[i]->m_faces[j]->m_v2; } else { //we've removed a tri, reduce the number of indices primGroupArray[0].numIndices -= 3; } } } //do lists for(int i = 0; i < tempFaces.size(); i++) { primGroupArray[0].indices[indexCtr++] = tempFaces[i]->m_v0; primGroupArray[0].indices[indexCtr++] = tempFaces[i]->m_v1; primGroupArray[0].indices[indexCtr++] = tempFaces[i]->m_v2; } } else { stripifier.CreateStrips(tempStrips, stripIndices, bStitchStrips, numSeparateStrips, bRestart, restartVal); //if we're stitching strips together, we better get back only one strip from CreateStrips() assert( (bStitchStrips && (numSeparateStrips == 1)) || !bStitchStrips); //convert to output format *numGroups = numSeparateStrips; //for the strips if(tempFaces.size() != 0) (*numGroups)++; //we've got a list as well, increment (*primGroups) = new PrimitiveGroup[*numGroups]; PrimitiveGroup* primGroupArray = *primGroups; //first, the strips int startingLoc = 0; for(int stripCtr = 0; stripCtr < numSeparateStrips; stripCtr++) { int stripLength = 0; if(!bStitchStrips) { int i; //if we've got multiple strips, we need to figure out the correct length for(i = startingLoc; i < stripIndices.size(); i++) { if(stripIndices[i] == -1) break; } stripLength = i - startingLoc; } else stripLength = stripIndices.size(); primGroupArray[stripCtr].type = PT_STRIP; primGroupArray[stripCtr].indices = new unsigned short[stripLength]; primGroupArray[stripCtr].numIndices = stripLength; int indexCtr = 0; for(int i = startingLoc; i < stripLength + startingLoc; i++) primGroupArray[stripCtr].indices[indexCtr++] = stripIndices[i]; //we add 1 to account for the -1 separating strips //this doesn't break the stitched case since we'll exit the loop startingLoc += stripLength + 1; } //next, the list if(tempFaces.size() != 0) { int faceGroupLoc = (*numGroups) - 1; //the face group is the last one primGroupArray[faceGroupLoc].type = PT_LIST; primGroupArray[faceGroupLoc].indices = new unsigned short[tempFaces.size() * 3]; primGroupArray[faceGroupLoc].numIndices = tempFaces.size() * 3; int indexCtr = 0; for(int i = 0; i < tempFaces.size(); i++) { primGroupArray[faceGroupLoc].indices[indexCtr++] = tempFaces[i]->m_v0; primGroupArray[faceGroupLoc].indices[indexCtr++] = tempFaces[i]->m_v1; primGroupArray[faceGroupLoc].indices[indexCtr++] = tempFaces[i]->m_v2; } } } //validate generated data against input if (validateEnabled) { const int NUMBINS = 100; std::vector in_bins[NUMBINS]; //hash input indices on first index for (int i = 0; i < in_numIndices; i += 3) { NvFaceInfo faceInfo(in_indices[i], in_indices[i + 1], in_indices[i + 2]); in_bins[in_indices[i] % NUMBINS].push_back(faceInfo); } for (int i = 0; i < *numGroups; ++i) { switch ((*primGroups)[i].type) { case PT_LIST: { for (int j = 0; j < (*primGroups)[i].numIndices; j += 3) { unsigned short v0 = (*primGroups)[i].indices[j]; unsigned short v1 = (*primGroups)[i].indices[j + 1]; unsigned short v2 = (*primGroups)[i].indices[j + 2]; //ignore degenerates if (NvStripifier::IsDegenerate(v0, v1, v2)) continue; if (!TestTriangle(v0, v1, v2, in_bins, NUMBINS)) { Cleanup(tempStrips, tempFaces); return false; } } break; } case PT_STRIP: { int brokenCtr = 0; bool flip = false; for (int j = 2; j < (*primGroups)[i].numIndices; ++j) { unsigned short v0 = (*primGroups)[i].indices[j - 2]; unsigned short v1 = (*primGroups)[i].indices[j - 1]; unsigned short v2 = (*primGroups)[i].indices[j]; if (flip) { //swap v1 and v2 unsigned short swap = v1; v1 = v2; v2 = swap; } //ignore degenerates if (NvStripifier::IsDegenerate(v0, v1, v2)) { flip = !flip; continue; } if (!TestTriangle(v0, v1, v2, in_bins, NUMBINS)) { Cleanup(tempStrips, tempFaces); return false; } flip = !flip; } break; } case PT_FAN: default: break; } } } //clean up everything Cleanup(tempStrips, tempFaces); return true; } //////////////////////////////////////////////////////////////////////////////////////// // RemapIndices() // // Function to remap your indices to improve spatial locality in your vertex buffer. // // in_primGroups: array of PrimitiveGroups you want remapped // numGroups: number of entries in in_primGroups // numVerts: number of vertices in your vertex buffer, also can be thought of as the range // of acceptable values for indices in your primitive groups. // remappedGroups: array of remapped PrimitiveGroups // // Note that, according to the remapping handed back to you, you must reorder your // vertex buffer. // void RemapIndices(const PrimitiveGroup* in_primGroups, const unsigned short numGroups, const unsigned short numVerts, PrimitiveGroup** remappedGroups) { (*remappedGroups) = new PrimitiveGroup[numGroups]; //caches oldIndex --> newIndex conversion int *indexCache; indexCache = new int[numVerts]; memset(indexCache, -1, sizeof(int)*numVerts); //loop over primitive groups unsigned int indexCtr = 0; for(int i = 0; i < numGroups; i++) { unsigned int numIndices = in_primGroups[i].numIndices; //init remapped group (*remappedGroups)[i].type = in_primGroups[i].type; (*remappedGroups)[i].numIndices = numIndices; (*remappedGroups)[i].indices = new unsigned short[numIndices]; for(int j = 0; j < numIndices; j++) { int cachedIndex = indexCache[in_primGroups[i].indices[j]]; if(cachedIndex == -1) //we haven't seen this index before { //point to "last" vertex in VB (*remappedGroups)[i].indices[j] = indexCtr; //add to index cache, increment indexCache[in_primGroups[i].indices[j]] = indexCtr++; } else { //we've seen this index before (*remappedGroups)[i].indices[j] = cachedIndex; } } } delete[] indexCache; } }//namespace NvTriStrip