ULRE/inc/hgl/math/MathMGL.h

254 lines
7.0 KiB
C++

#ifndef HGL_ALGORITHM_VECTOR_MATH_MGL_INCLUDE
#define HGL_ALGORITHM_VECTOR_MATH_MGL_INCLUDE
#ifdef _MSC_VER
#pragma warning(disable:4244) // double -> int 精度丢失警告
#endif//_MSC_VER
#include<MathGeoLib.h>
/**
* MathGeoLib
* Game Math and Geometry Library
*
* My C++ library for 3D mathematics and geometry manipulation.
* Jukka Jylänki
*
* offical web: http://clb.demon.fi/MathGeoLib/nightly/
*
* License:
*
* This library is licensed under the Apache 2 license. I am not a lawyer, but to me that
* license means that you can use this code for any purpose, both commercial and closed source.
* You are however restricted from claiming you wrote it yourself, and cannot hold me liable
* for anything over this code.
* I acknowledge that most of the non-trivial math routines are taken off a book or a
* research paper. In all places, I have tried to be diligent to properly attribute the original
* source. Please contact me if you feel I have misattributed something.
*/
namespace hgl
{
using namespace math;
typedef float2 Vector2f;
typedef float3 Vector3f;
typedef float4 Vector4f;
typedef float3x3 Matrix3f;
typedef float4x4 Matrix4f;
inline bool operator == (const Vector2f &lhs,const Vector2f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
return(true);
}
inline bool operator != (const Vector2f &lhs,const Vector2f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
return(false);
}
inline bool operator == (const Vector3f &lhs,const Vector3f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
if(lhs.z!=rhs.z)return(false);
return(true);
}
inline bool operator != (const Vector3f &lhs,const Vector3f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
if(lhs.z!=rhs.z)return(true);
return(false);
}
inline bool operator == (const Vector4f &lhs,const Vector4f &rhs)
{
if(lhs.x!=rhs.x)return(false);
if(lhs.y!=rhs.y)return(false);
if(lhs.z!=rhs.z)return(false);
if(lhs.w!=rhs.w)return(false);
return(true);
}
inline bool operator != (const Vector4f &lhs,const Vector4f &rhs)
{
if(lhs.x!=rhs.x)return(true);
if(lhs.y!=rhs.y)return(true);
if(lhs.z!=rhs.z)return(true);
if(lhs.w!=rhs.w)return(true);
return(false);
}
inline void vec3to2(Vector2f &dst,const Vector3f &src)
{
dst.x=src.x;
dst.y=src.y;
}
inline Vector2f vec3to2(const Vector3f &src)
{
return Vector2f(src.x,src.y);
}
inline void vec2to3(Vector3f &dst,const Vector2f &src,const float z)
{
dst.x=src.x;
dst.y=src.y;
dst.z=z;
}
inline Vector3f vec2to3(const Vector2f &src,const float z)
{
return Vector3f(src.x,src.y,z);
}
inline Matrix4f identity()
{
return Matrix4f::identity;
}
inline Matrix4f inverse(const Matrix4f &m)
{
return m.Inverted();
}
inline Matrix4f ortho( float left_plane,
float right_plane,
float bottom_plane,
float top_plane,
float near_plane,
float far_plane )
{
Matrix4f orthographic_projection_matrix =
{
2.0f / (right_plane - left_plane),0.0f,0.0f,-(right_plane + left_plane) / (right_plane - left_plane),
0.0f,2.0f / (bottom_plane - top_plane),0.0f,-(bottom_plane + top_plane) / (bottom_plane - top_plane),
0.0f,0.0f,1.0f / (near_plane - far_plane),near_plane / (near_plane - far_plane),
0.0f,0.0f,0.0f,1.0f
};
return orthographic_projection_matrix;
}
/**
* 生成一个2D正角视图矩阵
* @param width 宽
* @param height 高
* @param znear 近平面z值
* @param zfar 远平台z值
*/
inline Matrix4f ortho(float width,float height,float znear=0,float zfar=1)
{
Matrix4f orthographic_projection_matrix =
{
2.0f / width, 0.0f, 0.0f, -1,
0.0f, 2.0f / height, 0.0f, -1,
0.0f, 0.0f, 1.0f / (znear - zfar), znear / (znear - zfar),
0.0f, 0.0f, 0.0f, 1.0f
};
return orthographic_projection_matrix;
}
inline Matrix4f perspective(float aspect_ratio,
float field_of_view,
float near_plane,
float far_plane )
{
const float f = 1.0f / tan( hgl_ang2rad( 0.5f * field_of_view ) );
Matrix4f perspective_projection_matrix =
{
f / aspect_ratio, 0.0f, 0.0f, 0.0f,
0.0f, -f, 0.0f, 0.0f,
0.0f, 0.0f, far_plane / (near_plane - far_plane), (near_plane * far_plane) / (near_plane - far_plane),
0.0f, 0.0f, -1.0f, 0.0f
};
return perspective_projection_matrix;
}
inline Matrix4f translate(const Vector3f &v)
{
return Matrix4f::Translate(v);
}
inline Matrix4f translate(float x,float y,float z)
{
return Matrix4f::Translate(x,y,z);
}
inline Matrix4f scale(const Vector3f &v)
{
return Matrix4f::Scale(v,Vector3f::zero);
}
inline Matrix4f scale(float x,float y,float z)
{
return Matrix4f::Scale(Vector3f(x,y,z),Vector3f::zero);
}
inline Matrix4f scale(float s)
{
return Matrix4f::Scale(Vector3f(s,s,s),Vector3f::zero);
}
inline Matrix4f rotate(float angle,const Vector3f &axis)
{
return Matrix4f::RotateAxisAngle(axis.Normalized(),angle);
}
inline Matrix4f rotate(float angle,float x,float y,float z)
{
return rotate(angle,Vector3f(x,y,z));
}
inline Matrix4f rotate(float angle,const Vector4f &axis)
{
return rotate(angle,Vector3f(axis.x,axis.y,axis.z));
}
inline Vector3f rotate(const Vector3f &v3f,float angle,const Vector3f &axis)
{
Vector4f result=rotate(angle,axis)*Vector4f(v3f,1.0f);
return result.xyz();
}
template<typename T>
inline T normalized(const T &v)
{
return v.Normalized();
}
template<typename T>
inline void normalize(T &v)
{
v.Normalize();
}
template<typename T>
inline T cross(const T &v1,const T &v2)
{
return v1.Cross(v2);
}
template<typename T>
inline float dot(const T &v1,const T &v2)
{
return v1.Dot(v2);
}
inline float ray_angle_cos(const Ray &ray,const vec &pos)
{
return ray.dir.Dot((pos-ray.pos).Normalized());
}
}//namespace hgl
#endif//HGL_ALGORITHM_VECTOR_MATH_MGL_INCLUDE