156 lines
5.1 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#ifndef HGL_ALGORITHM_VECTOR_MATH_INCLUDE
#define HGL_ALGORITHM_VECTOR_MATH_INCLUDE
#include<hgl/type/DataType.h>
//注GLM/CML(OpenGLMode)是列矩阵,计算坐标matrix*pos
// 而MGL是行矩阵需要反过来pos*matrix
#include<hgl/algorithm/MathMGL.h> // Game Math and Geometry Library
namespace hgl
{
namespace algorithm
{
double Lsin(int angle); ///<低精度sin计算,注意传入的参数为角度而非弧度
double Lcos(int angle); ///<低精度cos计算,注意传入的参数为角度而非弧度
void Lsincos(int angle, double &s, double &c); ///<低精度sin+cos计算,注意传入的参数为角度而非弧度
/**
* 低精度atan函数
*/
double inline Latan(double z)
{
constexpr double n1 = 0.97239411f;
constexpr double n2 = -0.19194795f;
return (n1 + n2 * z * z) * z;
}
double Latan2(double y, double x); ///<低精度atan2函数
inline float length_squared(const Vector2f &v)
{
return (v.x*v.x) + (v.y*v.y);
}
inline float length_squared_2d(const Vector3f &v)
{
return (v.x*v.x) + (v.y*v.y);
}
inline float length_squared(const Vector3f &v)
{
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
}
inline float length_squared(const Vector4f &v)
{
return (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
}
template<typename T>
inline float length(const T &v)
{
return sqrt(length_squared(v));
}
inline float length_2d(const Vector3f &v)
{
return sqrt(length_squared_2d(v));
}
template<typename T1, typename T2>
inline float length_squared(const T1 &v1, const T2 &v2)
{
const float x = (v1.x - v2.x);
const float y = (v1.y - v2.y);
return x*x + y*y;
}
template<typename T1, typename T2>
inline float length(const T1 &v1, const T2 &v2)
{
return sqrt(length_squared(v1, v2));
}
inline float length_squared(const Vector3f &v1, const Vector3f &v2)
{
const float x = (v1.x - v2.x);
const float y = (v1.y - v2.y);
const float z = (v1.z - v2.z);
return x*x + y*y + z*z;
}
template<typename T1, typename T2>
inline float length_squared_2d(const T1 &v1, const T2 &v2)
{
const float x = (v1.x - v2.x);
const float y = (v1.y - v2.y);
return x*x + y*y;
}
inline float length(const Vector3f &v1, const Vector3f &v2)
{
return sqrt(length_squared(v1, v2));
}
template<typename T1, typename T2>
inline float length_2d(const T1 &v1, const T2 &v2)
{
return sqrt(length_squared_2d(v1, v2));
}
inline Vector2f to(const Vector2f &start, const Vector2f &end, float pos)
{
return Vector2f(start.x + (end.x - start.x)*pos,
start.y + (end.y - start.y)*pos);
}
inline Vector3f to(const Vector3f &start, const Vector3f &end, float pos)
{
return Vector3f(start.x + (end.x - start.x)*pos,
start.y + (end.y - start.y)*pos,
start.z + (end.z - start.z)*pos);
}
template<typename T>
inline void to_2d(T &result, const T &start, const T &end, float pos)
{
result.x = start.x + (end.x - start.x)*pos;
result.y = start.y + (end.y - start.y)*pos;
}
inline float ray_angle_cos(const Vector3f &ray_dir, const Vector3f &ray_pos, const Vector3f &pos)
{
return dot(ray_dir, normalized(pos - ray_pos));
}
/**
* 做一个2D旋转计算
* @param result 结果
* @param source 原始点坐标
* @param center 圆心坐标
* @param ang 旋转角度
*/
template<typename T1, typename T2, typename T3>
inline void rotate2d(T1 &result, const T2 &source, const T3 &center, const double ang)
{
double as, ac;
// double nx,ny;
// as=sin(ang*(HGL_PI/180.0f));
// ac=cos(ang*(HGL_PI/180.0f));
//sincos(ang*(HGL_PI/180.0f),&as,&ac); //在80x87指令上sin/cos是一个指令同时得出sin和cos所以可以这样做
Lsincos(ang, as, ac); //低精度sin/cos计算
result.x = center.x + ((source.x - center.x)*ac - (source.y - center.y)*as);
result.y = center.y + ((source.x - center.x)*as + (source.y - center.y)*ac);
}
}//namespace algorithm
}//namespace hgl
#endif//HGL_ALGORITHM_VECTOR_MATH_INCLUDE