ULRE/example/Basic/rf_test.cpp

147 lines
4.1 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// 该范例主要演示使用NDC坐标系直接绘制一个渐变色的三角形
#include"WorkManager.h"
#include<hgl/math/HalfFloat.h>
#include<hgl/graph/VKVertexInputConfig.h>
#include<hgl/graph/PrimitiveCreater.h>
#include<hgl/graph/mtl/Material2DCreateConfig.h>
#include<hgl/graph/VKMaterialInstance.h>
using namespace hgl;
using namespace hgl::graph;
constexpr uint32_t SCREEN_WIDTH=1280;
constexpr uint32_t SCREEN_HEIGHT=720;
constexpr uint32_t VERTEX_COUNT=3;
constexpr float position_data[VERTEX_COUNT*2]=
{
0.0, -0.5,
-0.5, 0.5,
0.5, 0.5
};
constexpr float color_data[VERTEX_COUNT*4]=
{ 1,0,0,1,
0,1,0,1,
0,0,1,1
};
class TestApp:public WorkObject
{
private:
Color4f clear_color =Color4f(0.2f,0.2f,0.2f,1.0f);
MaterialInstance * material_instance =nullptr;
Renderable * render_obj =nullptr;
Pipeline * pipeline =nullptr;
private:
bool InitAutoMaterial()
{
mtl::Material2DCreateConfig cfg(GetDeviceAttribute(),"VertexColor2D",Prim::Triangles);
cfg.coordinate_system=CoordinateSystem2D::NDC;
cfg.local_to_world=false;
AutoDelete<mtl::MaterialCreateInfo> mci=mtl::CreateVertexColor2D(&cfg);
material_instance=db->CreateMaterialInstance(mci);
return material_instance;
}
bool InitPipeline()
{
RenderPass *sc_render_pass=GetRenderFramework()->GetSwapchainModule()->GetRenderPass();
// pipeline=db->CreatePipeline(material_instance,sc_render_target,OS_TEXT("res/pipeline/solid2d"));
pipeline=sc_render_pass->CreatePipeline(material_instance,InlinePipeline::Solid2D,Prim::Triangles); //等同上一行为Framework重载默认使用swapchain的render target
return pipeline;
}
bool InitVBO()
{
PrimitiveCreater rpc(GetDevice(),material_instance->GetVIL());
rpc.Init("Triangle",VERTEX_COUNT);
if(!rpc.WriteVAB(VAN::Position, VF_V2F, position_data))return(false);
if(!rpc.WriteVAB(VAN::Color, VF_V4F, color_data ))return(false);
render_obj=db->CreateRenderable(&rpc,material_instance,pipeline);
return(render_obj);
}
public:
TestApp(RenderFramework *rf):WorkObject()
{
Join(rf,rf->GetSwapchainRenderTarget());
}
void Join(RenderFramework *rf,IRenderTarget *rt)
{
WorkObject::Join(rf,rt);
if(!InitAutoMaterial())
return;
if(!InitPipeline())
return;
if(!InitVBO())
return;
}
void Tick(double)override
{}
void Render(double delta_time,graph::RenderCmdBuffer *cmd)
{
if(!cmd)
return;
//这个使用完全不合理录制CMD和推送swapchain是两回事需要分开操作。
//比如场景有的物件分静态和动态
//可能静态物件就全部一次性录制好,而动态物件则是每帧录制
cmd->SetClearColor(0,clear_color);
cmd->BeginRenderPass();
cmd->Render(render_obj);
cmd->EndRenderPass();
}
};//class TestApp:public VulkanApplicationFramework
int main(int,char **)
{
RenderFramework rf(OS_TEXT("RenderFramework Test"));
if(!rf.Init(SCREEN_WIDTH,SCREEN_HEIGHT))
return(-1);
// RenderFramework存在于外部提供的是整体的渲染控制。
// WorkManager是提供一个工作业务管理但开发者并不一定要使用它所以我们不将它们整合在一起。
SwapchainWorkManager wm(&rf);
wm.Run(new TestApp(&rf));
// WorkObject被定义为工作对象所有的渲染控制都需要被写在WorkObject的Render函数下。
// 但我们认为游戏开发者不应该关注如何控制渲染,而应该关注如何处理游戏逻辑.
// 所以我们在WorkObject的基础上再提供RenderWorkObject派生类用于直接封装好的渲染场景树控制。
//
// 开发者仅需要将要渲染的物件放置于场景树即可。
// 但开发者也可以直接使用WorkObject自行管理这些事。
}