147 lines
4.1 KiB
C++
147 lines
4.1 KiB
C++
// 该范例主要演示使用NDC坐标系直接绘制一个渐变色的三角形
|
||
|
||
#include"WorkManager.h"
|
||
#include<hgl/math/HalfFloat.h>
|
||
#include<hgl/graph/VKVertexInputConfig.h>
|
||
#include<hgl/graph/PrimitiveCreater.h>
|
||
#include<hgl/graph/mtl/Material2DCreateConfig.h>
|
||
#include<hgl/graph/VKMaterialInstance.h>
|
||
|
||
using namespace hgl;
|
||
using namespace hgl::graph;
|
||
|
||
constexpr uint32_t SCREEN_WIDTH=1280;
|
||
constexpr uint32_t SCREEN_HEIGHT=720;
|
||
|
||
constexpr uint32_t VERTEX_COUNT=3;
|
||
|
||
constexpr float position_data[VERTEX_COUNT*2]=
|
||
{
|
||
0.0, -0.5,
|
||
-0.5, 0.5,
|
||
0.5, 0.5
|
||
};
|
||
|
||
constexpr float color_data[VERTEX_COUNT*4]=
|
||
{ 1,0,0,1,
|
||
0,1,0,1,
|
||
0,0,1,1
|
||
};
|
||
|
||
class TestApp:public WorkObject
|
||
{
|
||
private:
|
||
|
||
Color4f clear_color =Color4f(0.2f,0.2f,0.2f,1.0f);
|
||
|
||
MaterialInstance * material_instance =nullptr;
|
||
Renderable * render_obj =nullptr;
|
||
|
||
Pipeline * pipeline =nullptr;
|
||
|
||
private:
|
||
|
||
bool InitAutoMaterial()
|
||
{
|
||
mtl::Material2DCreateConfig cfg(GetDeviceAttribute(),"VertexColor2D",Prim::Triangles);
|
||
|
||
cfg.coordinate_system=CoordinateSystem2D::NDC;
|
||
cfg.local_to_world=false;
|
||
|
||
AutoDelete<mtl::MaterialCreateInfo> mci=mtl::CreateVertexColor2D(&cfg);
|
||
|
||
material_instance=db->CreateMaterialInstance(mci);
|
||
|
||
return material_instance;
|
||
}
|
||
|
||
bool InitPipeline()
|
||
{
|
||
RenderPass *sc_render_pass=GetRenderFramework()->GetSwapchainModule()->GetRenderPass();
|
||
|
||
// pipeline=db->CreatePipeline(material_instance,sc_render_target,OS_TEXT("res/pipeline/solid2d"));
|
||
pipeline=sc_render_pass->CreatePipeline(material_instance,InlinePipeline::Solid2D,Prim::Triangles); //等同上一行,为Framework重载,默认使用swapchain的render target
|
||
|
||
return pipeline;
|
||
}
|
||
|
||
bool InitVBO()
|
||
{
|
||
PrimitiveCreater rpc(GetDevice(),material_instance->GetVIL());
|
||
|
||
rpc.Init("Triangle",VERTEX_COUNT);
|
||
|
||
if(!rpc.WriteVAB(VAN::Position, VF_V2F, position_data))return(false);
|
||
if(!rpc.WriteVAB(VAN::Color, VF_V4F, color_data ))return(false);
|
||
|
||
render_obj=db->CreateRenderable(&rpc,material_instance,pipeline);
|
||
return(render_obj);
|
||
}
|
||
|
||
public:
|
||
|
||
TestApp(RenderFramework *rf):WorkObject()
|
||
{
|
||
Join(rf,rf->GetSwapchainRenderTarget());
|
||
}
|
||
|
||
void Join(RenderFramework *rf,IRenderTarget *rt)
|
||
{
|
||
WorkObject::Join(rf,rt);
|
||
|
||
if(!InitAutoMaterial())
|
||
return;
|
||
|
||
if(!InitPipeline())
|
||
return;
|
||
|
||
if(!InitVBO())
|
||
return;
|
||
}
|
||
|
||
void Tick(double)override
|
||
{}
|
||
|
||
void Render(double delta_time,graph::RenderCmdBuffer *cmd)
|
||
{
|
||
if(!cmd)
|
||
return;
|
||
|
||
//这个使用完全不合理,录制CMD和推送swapchain是两回事,需要分开操作。
|
||
//比如场景有的物件分静态和动态
|
||
|
||
//可能静态物件就全部一次性录制好,而动态物件则是每帧录制
|
||
|
||
cmd->SetClearColor(0,clear_color);
|
||
|
||
cmd->BeginRenderPass();
|
||
cmd->Render(render_obj);
|
||
cmd->EndRenderPass();
|
||
}
|
||
};//class TestApp:public VulkanApplicationFramework
|
||
|
||
int main(int,char **)
|
||
{
|
||
RenderFramework rf(OS_TEXT("RenderFramework Test"));
|
||
|
||
if(!rf.Init(SCREEN_WIDTH,SCREEN_HEIGHT))
|
||
return(-1);
|
||
|
||
// RenderFramework存在于外部,提供的是整体的渲染控制。
|
||
|
||
// WorkManager是提供一个工作业务管理,但开发者并不一定要使用它,所以我们不将它们整合在一起。
|
||
|
||
SwapchainWorkManager wm(&rf);
|
||
|
||
wm.Run(new TestApp(&rf));
|
||
|
||
// WorkObject被定义为工作对象,所有的渲染控制都需要被写在WorkObject的Render函数下。
|
||
|
||
// 但我们认为游戏开发者不应该关注如何控制渲染,而应该关注如何处理游戏逻辑.
|
||
// 所以我们在WorkObject的基础上再提供RenderWorkObject派生类,用于直接封装好的渲染场景树控制。
|
||
//
|
||
// 开发者仅需要将要渲染的物件放置于场景树即可。
|
||
|
||
// 但开发者也可以直接使用WorkObject,自行管理这些事。
|
||
}
|